LI L K, HUANG Z, GU Y S, et al. Development of forebody asymmetric vortex control based on alternating synthetic jet and the verification on model free flight[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(4): 96-104. DOI: 10.11729/syltlx20230042
Citation: LI L K, HUANG Z, GU Y S, et al. Development of forebody asymmetric vortex control based on alternating synthetic jet and the verification on model free flight[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(4): 96-104. DOI: 10.11729/syltlx20230042

Development of forebody asymmetric vortex control based on alternating synthetic jet and the verification on model free flight

More Information
  • Received Date: March 23, 2023
  • Revised Date: April 20, 2023
  • Accepted Date: May 18, 2023
  • In order to apply the forebody vortex flow control method to high Angle of Attack (AoA) flight control of the aircraft, an asymmetric vortex control technique based on the Alternating Synthetic Jet (ASJ) flow was proposed and developed. A set of airborne alternating synthetic jet control device and a free flight verification model aircraft were developed. The feasibility of using the forebody vortex control method to realize tail spin out and high Angle of Attack attitude control was verified by semi-free flight in the wind tunnel and model free flight in open airspace. Meanwhile, by means of the flight measurement and control system and the airborne pressure measurement system, the aircraft attitude, vortex position and body surface pressure can be measured synchronously, which can effectively evaluate the efficiency of the vortex control technology. Wind tunnel semi-free flight test results show that the alternating synthetic jet can effectively control the relative position of the forebody vortices at 60° Angle of Attack, which can generate yaw moment and realize heading control at high Angle of Attack. In the flight test, the technology can realize the change of tail spin under the failure of conventional rudder, and the controllable tail spin angular velocity can reach 173 (°)/s. Based on this technology, the verification model aircraft can perform fast yaw control when flying at high Angle of Attack, and the time delay from control input to yaw angular velocity change is less than 0.5 seconds.
  • [1]
    MALCOLM G. Forebody vortex control - A progress review[C]//Proc of the 11th Applied Aerodynamics Conference. 1993. doi: 10.2514/6.1993-3540
    [2]
    WILLIAMS D, WILLIAMS D. A review of forebody vortex control scenarios[C]//Proc of the 28th Fluid Dynamics Conference. 1997. doi: 10.2514/6.1997-1967
    [3]
    翟建, 张伟伟, 王焕玲. 大迎角前体涡控制方法综述[J]. 空气动力学学报, 2017, 35(3): 354–367. DOI: 10.7638/kqdlxxb-2017.0018

    ZHAI J, ZHANG W W, WANG H L. Reviews of forebody vortex control method at high angles of attack[J]. Acta Aerodynamica Sinica, 2017, 35(3): 354–367. doi: 10.7638/kqdlxxb-2017.0018
    [4]
    REDING J P, ERICSSON L E. Maximum vortex-induced side force[J]. Journal of Spacecraft and Rockets, 1978, 15(4): 201–207. doi: 10.2514/3.57306
    [5]
    ZILLIAC G, DEGANI D, TOBAK M. Asymmetric vortices on a slender body of revolution[C]//Proc of the 28th Aerospace Sciences Meeting. 1990. doi: 10.2514/6.1990-388
    [6]
    闻静, 王延奎, 邓学蓥. 前体边条控制技术对航向静稳定性的影响[J]. 北京航空航天大学学报, 2016, 42(10): 2180–2188. DOI: 10.13700/j.bh.1001-5965.2015.0746

    WEN J, WANG Y K, DENG X Y. Effect of forebody strake control technology on static directional stability[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(10): 2180–2188. doi: 10.13700/j.bh.1001-5965.2015.0746
    [7]
    王元靖, 范召林, 侯跃龙, 等. 粗糙带对细长体大迎角流动非对称性的影响[J]. 空气动力学学报, 2005, 23(3): 284–288,316. DOI: 10.3969/j.issn.0258-1825.2005.03.004

    WANG Y J, FAN Z L, HOU Y L, et al. Effects of grit strip on flow asymmetry over a slender revolution body at high angles of attack[J]. Acta Aerodynamica Sinica, 2005, 23(3): 284–288,316. doi: 10.3969/j.issn.0258-1825.2005.03.004
    [8]
    MURRI D, SHAH G, DICARLO D, et al. Actuated forebody strake controls for the F-18 high alpha research vehicle[C]//Proc of the Flight Simulation and Technologies. 1993. doi: 10.2514/6.1993-3675
    [9]
    邓学蓥. 非对称涡流动特性和主动控制及其应用[C]//近代空气动力学研讨会论文集. 2005.
    [10]
    孟轩, 陈志敏, 徐敏. 细长旋成体单孔微吹气扰动控制的数值研究[J]. 弹道学报, 2008, 20(2): 37–40.

    MENG X, CHEN Z M, XU M. Numerical study on flow control with single hole microblowing[J]. Journal of Ballistics, 2008, 20(2): 37–40.
    [11]
    王延奎, 魏占峰, 邓学蓥, 等. 飞机大迎角非对称涡组合扰动主动控制研究[J]. 力学学报, 2007, 39(4): 433–441. DOI: 10.3321/j.issn:0459-1879.2007.04.001

    WANG Y K, WEI Z F, DENG X Y, et al. An experimental study on forebody vortex flow control technique using combined perturbation[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 39(4): 433–441. doi: 10.3321/j.issn:0459-1879.2007.04.001
    [12]
    顾蕴松, 明晓. 大迎角细长体侧向力的比例控制[J]. 航空学报, 2006, 27(5): 746–750. DOI: 10.3321/j.issn:1000-6893.2006.05.003

    GU Y S, MING X. Proportional side force control of slender body at high angle of attack[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(5): 746–750. doi: 10.3321/j.issn:1000-6893.2006.05.003
    [13]
    高超, 倪章松, 薛明, 等. 基于新型丝状电极等离子体激励器的前体涡控制[J]. 空气动力学学报, 2021, 39(2): 39–52. DOI: 10.7638/kqdlxxb-2020.0116

    GAO C, NI Z S, XUE M, et al. Forebody vortex control with a wire-based DBD plasma actuator[J]. Acta Aerody-namica Sinica, 2021, 39(2): 39–52. doi: 10.7638/kqdlxxb-2020.0116
    [14]
    孟宣市, 郭志鑫, 罗时钧, 等. 细长圆锥前体非对称涡流场的等离子体控制[J]. 航空学报, 2010, 31(3): 500–505.

    MENG X S, GUO Z X, LUO S J, et al. Control of asymmetric vortices over a slender conical forebody using plasma actuators[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(3): 500–505.
    [15]
    KRAMER B, SUAREZ C, MALCOLM G, et al. Forebody vortex control with jet and slot blowing on an F/A-18[C]//Proc of the 11th Applied Aerodynamics Conference. 1993. doi: 10.2514/6.1993-3449
    [16]
    MURRI D G, SHAH G H, DICARLO D J, et al. Actuated forebody strake controls for the F-18 high-alpha research vehicle[J]. Journal of Aircraft, 1995, 32(3): 555–562. doi: 10.2514/3.46755
    [17]
    明晓. 钝体尾流的特性及控制[D]. 南京: 南京航空航天大学, 1988.
    [18]
    罗振兵. 合成射流/合成双射流机理及其在射流矢量控制和微泵中的应用研究[D]. 长沙: 国防科学技术大学, 2006.
    [19]
    ZHANG P F, WANG J J. Novel signal wave pattern for efficient synthetic jet generation[J]. AIAA Journal, 2007, 45(5): 1058–1065. doi: 10.2514/1.25445
    [20]
    LU Y R, WANG J S, WANG J J. Numerical investigation of efficient synthetic jets generated by multiple-frequency actuating signals[J]. Acta Mechanica Sinica, 2022, 38(1): 1–11. doi: 10.1007/s10409-021-09015-x
    [21]
    李卓奇. 飞行器前体非对称涡双合成射流控制特性研究[D]. 南京: 南京航空航天大学, 2019.
    [22]
    王奇特. 合成射流对静态与动态运动的细长体前体涡流动控制研究[D]. 南京: 南京航空航天大学, 2018.
    [23]
    顾蕴松, 王奇特, 程克明, 等. 一种通过控制前体涡改出尾旋的方法及流动控制激励器: 中国, CN105864232A[P]. 2016-08-17.
  • Related Articles

    [1]HE Chao, XIE Fei, XU Xiaobing, CHEN Lei. Design and application of launch device for free-flight test in hypersonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(5): 121-127. DOI: 10.11729/syltlx20200038
    [2]XIAO Heng, GU Yunsong, SUN Zhijun. Unsteady surface pressure measurements of standard spinning missile model in supersonic flow[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(4): 62-67. DOI: 10.11729/syltlx20190100
    [3]Ma Jun, Song Jin, Liu Bei, Qin Sanchun, Xiong Jianjun, Jiang Min. Design and implementationfor full field of view measurement scheme in vertical wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(6): 66-70, 104. DOI: 10.11729/syltlx20160087
    [4]HUANG Hui-ming, LIU Xiang-yong, MA Jun, SONG Jin. The improvement method in 3-D measurement of airplane free-spin[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(2): 77-81. DOI: 10.3969/j.issn.1672-9897.2013.02.015
    [5]ZHU Ming-hong, YANG Hong-sen, WANG Xun-nian, WU Hai-ying, JIANG Min, MA Jun. Improvements and validation of spin test techniques in vertical wind-tunnel[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(5): 94-98. DOI: 10.3969/j.issn.1672-9897.2011.05.019
    [6]YUAN Hong-gang, LI Jin-xue, YANG Yong-dong, WANG Tian-hong. Test investigation of wake measurement for rotors in forward flight[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(4): 29-32. DOI: 10.3969/j.issn.1672-9897.2010.04.007
    [7]ZHU Ming-hong, WANG Xun-nian, LI Bao, LIU Yi-xin, JIANG Min, MA Jun, ZHANG Jun. Free-spin test technique in Φ5m vertical wind tunnel in CARDC[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(3): 49-53. DOI: 10.3969/j.issn.1672-9897.2007.03.010
    [8]The survey of the inertia moment in free flight models[J]. Journal of Experiments in Fluid Mechanics, 2002, 16(2): 88-91. DOI: 10.3969/j.issn.1672-9897.2002.02.017
    [9]LI Yong-fu. Spin prediction through all process of the aircraft development[J]. Journal of Experiments in Fluid Mechanics, 1999, 13(4): 32-35. DOI: 10.3969/j.issn.1672-9897.1999.04.007
    [10]Li Yongfu. The Test Technique of Spin for Vertical Wind Tunnel[J]. Journal of Experiments in Fluid Mechanics, 1999, 13(1): 13-18. DOI: 10.3969/j.issn.1672-9897.1999.01.002
  • Cited by

    Periodical cited type(10)

    1. 刘宇,秦梦婕,王强,易贤. 含盐海水飞沫的结冰风洞试验相似准则. 航空学报. 2023(S2): 303-313 .
    2. 刘宇,易贤,王强,李维浩. 结冰风洞试验混合相似转换方法及其验证. 空气动力学学报. 2021(02): 176-183 .
    3. 沈贺,魏搏,姜禹,郭文峰,李岩. 叶片数对垂直轴风力机结冰分布影响风洞试验. 实验流体力学. 2021(04): 67-72 . 本站查看
    4. 张丽芬,葛鑫,张斐,刘振侠,马栋,吕维进. 旋转帽罩结冰相似准则的冰风洞试验研究. 实验流体力学. 2021(04): 52-59 . 本站查看
    5. 田永强,蔡晋生,张正科,杨磊磊. 结冰风洞实验中的相似理论. 北京航空航天大学学报. 2020(02): 359-370 .
    6. 李维浩,李伟斌,易贤,王应宇. 考虑动力学效应的结冰试验相似准则修正方法. 实验流体力学. 2020(03): 97-103 . 本站查看
    7. 施红,王均毅,陈佳敏,丁媛媛,张彤. 过冷大水滴条件下结冰相似准则. 航空动力学报. 2019(05): 1101-1110 .
    8. 马军林,肖京平,王桥,胡丽燕,王强. 飞机结冰相似准则研究进展. 飞行力学. 2019(04): 1-7 .
    9. 杨倩,董威,郭之强,郑梅. 涡扇发动机短舱结冰试验相似方法. 航空动力学报. 2019(09): 1988-2000 .
    10. 杜雁霞,李明,桂业伟,王梓旭. 飞机结冰热力学行为研究综述. 航空学报. 2017(02): 30-41 .

    Other cited types(8)

Catalog

    Article Metrics

    Article views (161) PDF downloads (38) Cited by(18)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close