Citation: | XU C Z,DU T,HAN Z H,et al. Comparison of machine learning data fusion methods applied to aerodynamic modeling of rocket first stage with grid fins[J]. Journal of Experiments in Fluid Mechanics, 2022,36(3):79-92.. DOI: 10.11729/syltlx20210154 |
[1] |
杜涛,陈闽慷,李凰立,等. 变精度模型(VCM)的自适应预处理方法研究[J]. 空气动力学学报,2018,36(2):315-319. DOI: 10.7638/kqdlxxb-2016.0040
DU T,CHEN M K,LI H L,et al. Research on adaptive preconditioning method for variable complexity model[J]. Acta Aerodynamica Sinica,2018,36(2):315-319. doi: 10.7638/kqdlxxb-2016.0040
|
[2] |
杜涛,许晨舟,王国辉,等. 人工智能气动特性预测技术在火箭子级落区控制项目的应用[J]. 宇航学报,2021,42(1):61-73. DOI: 10.3873/j.issn.1000-1328.2021.01.007
DU T,XU C Z,WANG G H,et al. The application of aerodynamic coefficients prediction technique via artificial intelligence method to rocket first stage landing area control project[J]. Journal of Astronautics,2021,42(1):61-73. doi: 10.3873/j.issn.1000-1328.2021.01.007
|
[3] |
张天姣,钱炜祺,周宇,等. 人工智能与空气动力学结合的初步思考[J]. 航空工程进展,2019,10(1):1-11.
ZHANG T J,QIAN W Q,ZHOU Y,et al. Preliminary thoughts on the combination of artificial intelligence and aerodynamics[J]. Advances in Aeronautical Science and Engineering,2019,10(1):1-11.
|
[4] |
唐志共,王文正,陈功,等. 气动模型在现代气动试验设计中的应用研究[J]. 空气动力学学报,2017,35(2):172-176. DOI: 10.7638/kqdlxxb—2015.0190
TANG Z G,WANG W Z,CHEN G,et al. Research on the application of aerodynamic models in modern design of aerodynamic experiments[J]. Acta Aerodynamica Sinica,2017,35(2):172-176. doi: 10.7638/kqdlxxb—2015.0190
|
[5] |
SLOTNICK J, KHODADOUST A, ALONSO J, et al. CFD vision 2030 study: A path to revolutionary computational aerosciences[R]. NASA/CR-2014-218178, 2014.
|
[6] |
韩忠华,许晨舟,乔建领,等. 基于代理模型的高效全局气动优化设计方法研究进展[J]. 航空学报,2020,41(5):25-65.
HAN Z H,XU C Z,QIAO J L,et al. Recent progress of efficient global aerodynamic shape optimization using surrogate-based approach[J]. Acta Aeronautica et Astronautica Sinica,2020,41(5):25-65.
|
[7] |
韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报,2016,37(11):3197-3225.
HAN Z H. Kriging surrogate model and its application to design optimization: a review of recent progress[J]. Acta Aeronautica et Astronautica Sinica,2016,37(11):3197-3225.
|
[8] |
周奇,杨扬,宋学官,等. 变可信度近似模型及其在复杂装备优化设计中的应用研究进展[J]. 机械工程学报,2020,56(24):219-245. DOI: 10.3901/JME.2020.24.219
ZHOU Q,YANG Y,SONG X G,et al. Survey of multi-fidelity surrogate models and their applications in the design and optimization of engineering equipment[J]. Journal of Mechanical Engineering,2020,56(24):219-245. doi: 10.3901/JME.2020.24.219
|
[9] |
何开锋,钱炜祺,汪清,等. 数据融合技术在空气动力学研究中的应用[J]. 空气动力学学报,2014,32(6):777-782. DOI: 10.7638/kqdlxxb—2014.0072
HE K F,QIAN W Q,WANG Q,et al. Application of data fusion technique in aerodynamics studies[J]. Acta Aerodynamica Sinica,2014,32(6):777-782. doi: 10.7638/kqdlxxb—2014.0072
|
[10] |
HAFTKA R T. Combining global and local approximations[J]. AIAA Journal,1991,29(9):1523-1525. doi: 10.2514/3.10768
|
[11] |
CHANG K J,HAFTKA R T,GILES G L,et al. Sensitivity-based scaling for approximating structural response[J]. Journal of Aircraft,1993,30(2):283-288. doi: 10.2514/3.48278
|
[12] |
ALEXANDROV N M,DENNIS J E,LEWIS R M,et al. A trust-region framework for managing the use of approximation models in optimization[J]. Structural Optimization,1998,15(1):16-23. doi: 10.1007/BF01197433
|
[13] |
ALEXANDROV N, NIELSEN E, LEWIS R, et al. First-order model management with variable-fidelity physics applied to multi-element airfoil optimization[C]//Proc of the 8th Symposium on Multidisciplinary Analysis and Optimization. 2000. doi: 10.2514/6.2000-4886
|
[14] |
SHU L S,JIANG P,SONG X G,et al. Novel approach for selecting low-fidelity scale factor in multifidelity metamodeling[J]. AIAA Journal,2019,57(12):5320-5330. doi: 10.2514/1.j057989
|
[15] |
PARK C,HAFTKA R T,KIM N H. Low-fidelity scale factor improves Bayesian multi-fidelity prediction by reducing bumpiness of discrepancy function[J]. Structural and Multidisciplinary Optimization,2018,58(2):399-414. doi: 10.1007/s00158-018-2031-2
|
[16] |
WANG S,LIU Y,ZHOU Q,et al. A multi-fidelity surrogate model based on moving least squares: fusing different fidelity data for engineering design[J]. Structural and Multidisciplinary Optimization,2021,64(6):3637-3652. doi: 10.1007/s00158-021-03044-5
|
[17] |
HAN Z H,GÖRTZ S,ZIMMERMANN R. Improving variable-fidelity surrogate modeling via gradient-enhanced kriging and a generalized hybrid bridge function[J]. Aerospace Science and Technology,2013,25(1):177-189. doi: 10.1016/j.ast.2012.01.006
|
[18] |
BANDLER J W,BIERNACKI R M,CHEN S H,et al. Space mapping technique for electromagnetic optimization[J]. IEEE Transactions on Microwave Theory and Techniques,1994,42(12):2536-2544. doi: 10.1109/22.339794
|
[19] |
ROBINSON T D,ELDRED M S,WILLCOX K E,et al. Surrogate-based optimization using multifidelity models with variable parameterization and corrected space mapping[J]. AIAA Journal,2008,46(11):2814-2822. doi: 10.2514/1.36043
|
[20] |
JONSSON E, LEIFSSON L, KOZIEL S. Aerodynamic optimization of wings by space mapping[C]//Proc of the 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2013. doi: 10.2514/6.2013-780
|
[21] |
何磊,钱炜祺,汪清,等. 机器学习方法在气动特性建模中的应用[J]. 空气动力学学报,2019,37(3):470-479. DOI: 10.7638/kqdlxxb—2019.0033
HE L,QIAN W Q,WANG Q,et al. Applications of machine learning for aerodynamic characteristics modeling[J]. Acta Aerodynamica Sinica,2019,37(3):470-479. doi: 10.7638/kqdlxxb—2019.0033
|
[22] |
KENNEDY M,O'HAGAN A. Predicting the output from a complex computer code when fast approximations are available[J]. Biometrika,2000,87(1):1-13. doi: 10.1093/biomet/87.1.1
|
[23] |
QIAN P Z G,WU C F J. Bayesian hierarchical modeling for integrating low-accuracy and high-accuracy experiments[J]. Technometrics,2008,50(2):192-204. doi: 10.1198/004017008000000082
|
[24] |
LE GRATIET L,GARNIER J. Recursive co-kriging model for design of computer experiments with multiple levels of fidelity[J]. International Journal for Uncertainty Quantification,2014,4(5):365-386. doi: 10.1615/int.j.uncertaintyquantification.2014006914
|
[25] |
XIAO M Y,ZHANG G H,BREITKOPF P,et al. Extended Co-Kriging interpolation method based on multi-fidelity data[J]. Applied Mathematics and Computation,2018,323:120-131. doi: 10.1016/j.amc.2017.10.055
|
[26] |
ZAYTSEV A. Reliable surrogate modeling of engineering data with more than two levels of fidelity[C]//Proc of the 2016 7th International Conference on Mechanical and Aerospace Engineering (ICMAE). 2016: 341-345. doi: 10.1109/ICMAE.2016.7549563
|
[27] |
ZHOU Q,WU Y D,GUO Z D,et al. A generalized hierarchical co-Kriging model for multi-fidelity data fusion[J]. Structural and Multidisciplinary Optimization,2020,62(4):1885-1904. doi: 10.1007/s00158-020-02583-7
|
[28] |
HAN Z H,GÖRTZ S. Alternative cokriging method for variable-fidelity surrogate modeling[J]. AIAA Journal,2012,50(5):1205-1210. doi: 10.2514/1.J051243
|
[29] |
ZIMMERMANN R, HAN Z H. Simplified cross-correlation estimation for multifidelity surrogate cokriging models[J]. Advances and Applications in Mathematical Sciences, 2010.
|
[30] |
HAN Z H,GÖRTZ S. Hierarchical kriging model for variable-fidelity surrogate modeling[J]. AIAA Journal,2012,50(9):1885-1896. doi: 10.2514/1.J051354
|
[31] |
MENG X H,KARNIADAKIS G E. A composite neural network that learns from multi-fidelity data: application to function approximation and inverse PDE problems[J]. Journal of Computational Physics,2020,401:109020. doi: 10.1016/j.jcp.2019.109020
|
[32] |
MENG X H,BABAEE H,KARNIADAKIS G E. Multi-fidelity Bayesian neural networks: Algorithms and applications[J]. Journal of Computational Physics,2021,438:110361. doi: 10.1016/j.jcp.2021.110361
|
[33] |
HE L,QIAN W Q,ZHAO T,et al. Multi-fidelity aerodynamic data fusion with a deep neural network modeling method[J]. Entropy (Basel, Switzerland),2020,22(9):1022. doi: 10.3390/e22091022
|
[34] |
ZHANG X S,XIE F F,JI T W,et al. Multi-fidelity deep neural network surrogate model for aerodynamic shape optimization[J]. Computer Methods in Applied Mechanics and Engineering,2021,373:113485. doi: 10.1016/j.cma.2020.113485
|
[35] |
SATRIA P P,RIZKI Z L,SHIMOYAMA K. Gaussian process surrogate model with composite kernel learning for engineering design[J]. AIAA Journal,2020,58(4):1864-1880. doi: 10.2514/1.J058807
|