Zhu Bo, Wang Yuanxing, Yu Yongsheng. Vortex-induced vibration measurement and analysis of model-sting system in wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2014, (5): 59-64. DOI: 10.11729/syltlx20130091
Citation: Zhu Bo, Wang Yuanxing, Yu Yongsheng. Vortex-induced vibration measurement and analysis of model-sting system in wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2014, (5): 59-64. DOI: 10.11729/syltlx20130091

Vortex-induced vibration measurement and analysis of model-sting system in wind tunnel

More Information
  • Long cantilever stings that support aerodynamic models in wind tunnels are a po-tential source of vibration problems which would impair the test data quality.It is reported in many documents to use the method of setting sensors on models to measure vibrations of the model-sting system,but setting sensors on small models is hard to realize.In this paper,a 0.55m×0.4m low turbulence aeroacoustic wind tunnel model-sting system is employed as the experimental object, acceleration sensors which directly measure the equipmentvibration and hot wires which indirectly measure the model wake are made use of jointly.The vortex-induced vibration models of the sys-tem are measured and analyzed.Wake measurement by hot wire to acquire vibration parameters of the model is tried,and this method is easy to be emploied for small models.At the same time, the methods of accelerator signal frequency domain filtering and frequency domain integration is used to acquire vibration model parameters of the model-sting for purpose of comparison with da-ta of hot wire.This method could improve the SNR of effective signal.With the method of accel-eration sensors power spectrum analysis,three order vibration frequencies of 31.1,120.9 and 221.4Hz of the system are acquired.With the method of frequency domain filtering and frequen-cy domain integration,the vibration mode and node of the system are acquired.With the method of hot wire measuring wake,vortex shedding frequencies of 31.1 and 124.1Hz,and the model buffet boundary are acquired.Experimental results show that,the results show that,the method of hot wire measuring model wake vortex shedding frequency for the analysis of aircraft model vi-bration is propitious to be applied for small models,since it has less interference with model sur-face flow field than the method of setting sensors on model surfaces.Therefore,the hot wire method is a practical method for vortex-induced vibration measurement.
  • Related Articles

    [1]LI Meng, ZHAO Huiyong, YUAN Qiang, CHEN Li, MU Jinhe. Experimental research on the influence of turbulence intensity on boundary layer transition in Mach 3 supersonic flow[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(6): 56-64. DOI: 10.11729/syltlx20220087
    [2]LIANG Zhi, HU Fei, SHI Yu, ZHANG Zhe, LIU Lei. Research of mast shadow effect on the average wind speed and turbulence intensity by field experiment[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(2): 88-97. DOI: 10.11729/syltlx20220010
    [3]ZHU Bo, CHEN Jiming, WU Wei, PEI Haitao. Experimental investigation of turbulence intensity measurement in continuous transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics. DOI: 10.11729/syltlx20220034
    [4]YANG Junwei, YANG Hua, FU Shifeng, ZONG Wangwang, SHA Chenglong. Wind tunnel experimental study of the grille-generated turbulence in the short test section[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(6): 86-93. DOI: 10.11729/syltlx20210042
    [5]HU Shangyu, LI Qiusheng, ZHANG Ming. Active turbulence simulation study of wind loads on standard low-rise building[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(4): 22-29. DOI: 10.11729/syltlx20190157
    [6]Yu Qianqian, Wang Jinhua, Zhang Weijie, Zhang Meng, Huang Zuohua. Development of scale-controlled premixed turbulent burner and the flame structure analysis[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(2): 10-17. DOI: 10.11729/syltlx20170150
    [7]Ma Ziran, Xu Minyi, Luan Jian, Liu Xiaopeng, Zhao Feifei. Statistical properties of turbulent free jets issuing from rectangular nozzles with different aspect ratios[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(1): 54-61. DOI: 10.11729/syltlx20160116
    [8]Zhu Bo, Peng Qiang, Tang Gengsheng. Digital signal process of low turbulence intensity based on EMD[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(5): 74-79. DOI: 10.11729/syltlx20150148
    [9]WU Wen-fei, XIE Jing-xing, GONG Zhi-jun, LI Bao-wei. PIV measurements of the turbulence integral length scale on cold combustion flow field in burner zone of tangential firing boiler[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(2): 38-41,50. DOI: 10.3969/j.issn.1672-9897.2012.02.008
    [10]LIU Gang, WANG Yang, WANG Xue-yan, SHI Jia-tao, WANG Jing. PIV measurements of the ILS on in-cylinder gas turbulent flow field of gasoline engine[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(1): 59-63,67. DOI: 10.3969/j.issn.1672-9897.2007.01.012
  • Cited by

    Periodical cited type(7)

    1. 郭沛洋,张毅,张梦卓,胡海豹. 亲水-超疏水相间表面通气减阻实验研究. 力学学报. 2024(01): 94-100 .
    2. 秦立果,刘建波,李航,卢山,马泽宇,王征,董光能. 水下湍流减阻技术研究进展. 表面技术. 2024(16): 1-18 .
    3. 张春来,张丽霞,王潇,吴银涛,王波. 沟槽型微纳复合结构表面的制备与减阻性能研究. 材料导报. 2023(12): 239-243 .
    4. 张奕,潘翀,窦建宇,张淼. 微型涡流发生器影响下的湍流边界层流场与摩阻特性. 实验流体力学. 2023(04): 48-58 . 本站查看
    5. 李茂林,张浩,玄克勇,石若冉,张志. 壁面微沟槽减阻技术研究进展. 煤气与热力. 2023(10): 12-19 .
    6. 李炳炘,张浩,玄克勇,孙国梁. 微沟槽减阻技术研究现状与进展综述. 煤气与热力. 2023(12): 21-27 .
    7. 罗忠,刘凯,周欣,胡俊波. 水下目标壳体复合涂层阻力试验. 船舶工程. 2022(09): 147-151 .

    Other cited types(9)

Catalog

    Article Metrics

    Article views (167) PDF downloads (7) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close