YUE Maoxiong, ZHANG Wanzhou, WU Yungang, YUAN Qiang, DENG Weixin. Research on large field visualizaiton based on divergent light reflective layout[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(3): 77-82. DOI: 10.11729/syltlx20200081
Citation: YUE Maoxiong, ZHANG Wanzhou, WU Yungang, YUAN Qiang, DENG Weixin. Research on large field visualizaiton based on divergent light reflective layout[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(3): 77-82. DOI: 10.11729/syltlx20200081

Research on large field visualizaiton based on divergent light reflective layout

More Information
  • Received Date: July 07, 2020
  • Revised Date: December 15, 2020
  • Larger scale of flow-field visualization is required for larger wind tunnel, larger test model and longer jet flow. Two methods of the large field visualization were proposed which are based on divergent light reflective layout and are named as the reflective focusing schlieren method and the reflective shadow method, respectively. A reflective focusing schlieren device was built in laboratory which improves the source grid and light source. A visualization field with a diameter of about 1.5 m was obtained. The field uniformity and the minimum exposure time under test condition indicate that the reflective focusing schlieren method could be utilized for the large scale wind tunnel and other situations. Also, to realize the large field visualization for the situation with strong vibration, a diffuse reflective shadow visualization device was set up, and a visualization field with a length of about 2.5 m was obtained for a combustion jet flow. Finally, according to the characteristics of the reflective method, the applicability of the method in larger tunnel layout was evaluated, and the results show that the method is completely suitable for the large-scale wind tunnel visualization.
  • [1]
    SETTLES G S. Schlieren and shadowgraph techniques: visualizing phenomena in transparent media[M]. Berlin: Springer Press, 2001.
    [2]
    范洁川. 近代流动显示技术[M]. 北京: 国防工业出版社, 2002.
    [3]
    孙威, 李泽仁, 汪伟, 等. 大口径纹影系统主反射镜装调结构分析与设计[J]. 深圳大学学报(理工版), 2010, 27(2): 162-166. DOI: 10.3969/j.issn.1000-2618.2010.02.008

    SUN W, LI Z R, WANG W, et al. Structural analysis and design for the supporting and adjusting of the primary mirror inschlieren system with large aperture[J]. Journal of Shenzhen University Science and Engineering, 2010, 27(2): 162-166. DOI: 10.3969/j.issn.1000-2618.2010.02.008
    [4]
    杨晓飞, 韩昌元. 利用计算机辅助装调检测矩形大口径离轴非球面的方法研究[J]. 光学技术, 2004, 30(5): 532-534. DOI: 10.3321/j.issn:1002-1582.2004.05.004

    YANG X F, HAN C Y. Study on testing methods of large-aperture rectangle off-axis aspherical surface with computer aided alignment[J]. Optical Technique, 2004, 30(5): 532-534. doi: 10.3321/j.issn:1002-1582.2004.05.004
    [5]
    MIZUKAKI T, BATHEL B F, BORG S E, et al. Background-orientedschlieren for large-scale and high-speed aerodynamic phenomena (invited)[C]//Proc of the 53rd AIAA Aerospace Sciences Meeting. 2015. doi: 10.2514/6.2015-1692
    [6]
    SMITH N T, HEINECK J T, SCHAIRER E T. Optical flow for flight and wind tunnel background orientedschlieren imaging[C]//Proc of the 55th AIAA Aerospace Sciences Meeting. 2017. doi: 10.2514/6.2017-0472
    [7]
    WEISS J, CHOKANI N. Integration properties of focusing schlieren deflectometer[R]. AIAA-2006-2810, 2006. doi: 10.2514/6.2006-2810.
    [8]
    STEVENS C A, HOKE J, SCHAUER F. Optical measurement of detonation with a focusingschlieren technique[C]//Proc of the 53rd AIAA Aerospace Sciences Meeting. 2015. doi: 10.2514/6.2015-1350
    [9]
    KOUCHI T, GOYNE C P, ROCKWELL R D, et al. Focusing-schlieren visualization in direct-connect dual-mode scramjet[R]. AIAA-2012-5834, 2012.
    [10]
    FAGAN A F, L'ESPERANCE D, ZAMAN K Q. Application of a novel projection focusingschlieren system in NASA test facilities[C]//Proc of the 30th AIAA Aerodynamic Measurement Technology and Ground Testing Conference. 2014. doi: 10.2514/6.2014-2522
    [11]
    ZHOU H, WANG G, YUAN X, et al. CCD camera shadowgraph system with laser light source[C]//Proc of the 18th International Symposium on Ballistics. 1999.
    [12]
    罗红娥, 顾金良, 陈平, 等. 三次序列闪光阴影照相系统研究[J]. 半导体光电, 2011, 32(2): 265-267. https://www.cnki.com.cn/Article/CJFDTOTAL-BDTG201102030.htm

    LUO H E, GU J L, CHEN P, et al. Research on shadow photograph system with three-sequence laser sparking[J]. Semiconductor Optoelectronics, 2011, 32(2): 265-267. https://www.cnki.com.cn/Article/CJFDTOTAL-BDTG201102030.htm
    [13]
    岳茂雄, 王如琴, 姚向红, 等. 高速聚焦纹影改进及应用[J]. 实验流体力学, 2013, 27(5): 88-93. http://www.syltlx.com/CN/abstract/abstract10399.shtml

    YUE M X, WANG R Q, YAO X H, et al. Improved high-speed focusingschlieren system and its application[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(5): 88-93. http://www.syltlx.com/CN/abstract/abstract10399.shtml
    [14]
    徐翔, 谢爱民, 吕治国, 等. 聚焦纹影显示技术在激波风洞的初步应用[J]. 实验流体力学, 2009, 23(3): 75-79. http://www.syltlx.com/CN/abstract/abstract9749.shtml

    XU X, XIE A M, LV Z G, et al. Application of focusingschlieren visualization system in shock tunnel experiment[J]. Journal of Experiments in Fluid Mechanics, 2009, 23(3): 75-79. http://www.syltlx.com/CN/abstract/abstract9749.shtml
    [15]
    谢爱民, 部绍清, 罗锦阳. 基于光源拼接的大视场聚焦纹影技术初步研究[J]. 实验流体力学, 2018, 32(6): 68-73. DOI: 10.11729/syltlx20180012

    XIE A M, BU S Q, LUO J Y. Primary study of large-field focusingschlieren technique based on tiled light sources[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6): 68-73. doi: 10.11729/syltlx20180012
    [16]
    岳茂雄, 吴运刚, 张龙, 等. 反射式聚焦纹影显示大视场[C]//中国空气动力学会测控专业委员会第六届五次全国学术交流会论文集. 2014.

    YUE M X, WU Y G, ZHANG L, et al. Flow visualization of the large field of view using reflection focusedschlieren[C]//Proc of the 5th session of the 6 national academic exchange of measurement and control committee of China Aerodynamics Society. 2014.
  • Related Articles

    [1]ZHANG Hongjian, ZHANG Yanxin, XIONG Jianjun, ZHAO Zhao, RAN Lin, YI Xian. Numerical simulation and experimental research of Lamb wave propagation characteristics in ice[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(2): 68-77. DOI: 10.11729/syltlx20210170
    [2]DU Baihe, ZHANG Songhe, GE Qiang, WANG Maogang. Study on flow field characteristics of inert gas-air hybrid arc[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(5): 69-75. DOI: 10.11729/syltlx20210052
    [3]XIE Aimin, XING Yanchang, WANG Min, BU Shaoqing. 1.2 m large-field focusing schlieren technique[J]. Journal of Experiments in Fluid Mechanics. DOI: 10.11729/syltlx20220047
    [4]GUO Xiangdong, ZHANG Pingtao, ZHANG Ke, GUO Qiling, GUO Long. Improvement and evaluation of thermal flow-field quality in CARDC icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(4): 41-51. DOI: 10.11729/syltlx20200118
    [5]Xu Kejing, Chang Juntao, Li Nan, Bao Wen, Yu Daren. Recent research progress on motion characteristics and flow mechanism of shock train in an isolator with background waves[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 31-42. DOI: 10.11729/syltlx20180196
    [6]Xie Aimin, Bu Shaoqing, Luo Jinyang. Primary study of large-field focusing schlieren technique based on tiled light sources[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6): 68-73. DOI: 10.11729/syltlx20180012
    [7]Sha Xinguo, Wen Shuai, Yuan Minglun, Lu Hongbo, Ji Feng. Visualization of shock wave in hypersonic flow using electric discharge[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(3): 87-93. DOI: 10.11729/syltlx20170106
    [8]Chen Fei, Sun Bin. The study of dynamic differential pressure signal of gas-liquid two-phase flow based on adaptive Chirplet transformation[J]. Journal of Experiments in Fluid Mechanics, 2015, (6): 59-66. DOI: 10.11729/syltlx20140113
    [9]JIA Xiao-na, CHEN Xu, LI Wei-hua, ZUO Bing-guang. The application of synthetic schlieren technique in the experimental study of internal wave[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(4): 92-96. DOI: 10.3969/j.issn.1672-9897.2013.04.017
    [10]ZHU Zi-hua, HU Shi-jun, HU Da-peng, LIU Xue-wu. Experimental study and simulation of swirling jet gas wave refrigerator[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(3): 35-37,65. DOI: 10.3969/j.issn.1672-9897.2007.03.007
  • Cited by

    Periodical cited type(3)

    1. 王一平,徐司雨,姚二岗,李恒,张洋,于瑾,赵凤起. 先进光学诊断技术在含能材料燃烧测试中的应用进展. 火炸药学报. 2024(01): 1-16 .
    2. 吴凌昊,石小江,李杨,雷庆春,范玮. 超燃冲压发动机燃烧室光学测量技术发展现状. 计测技术. 2024(03): 57-71 .
    3. 袁勋,于欣,彭江波,曾徽,欧东斌. 电弧风洞NO平面激光诱导荧光可视化方法与试验验证. 航空学报. 2023(19): 73-82 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (360) PDF downloads (32) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close