Citation: | Ji Jun, Song Xiaoyu, Deng Xiangdong, Guo Dapeng, Li Peng. Research on metric thrust jet-effects testing methodology in high-speed wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(6): 71-77. DOI: 10.11729/syltlx20160176 |
[1] |
Staff of the Propulsion Aerodynamics Branch. A user's guide to the langley 16-foot transonic tunnel complex[M]. NASA Technical Memorandum 102750, 1990.
|
[2] |
Capone F J, Bangert L S, Asbury S C. The NASA Langley 16-foot transonic tunnel historical overview, facility description, calibration, flow characteristics, and test capabilities[R]. NASA Technical Paper 3521, 1995. http://www.researchgate.net/publication/2301696_Historical_Overview_Facility_Description_Calibration_Flow_Characteristics_and_Test_Capabilities
|
[3] |
Smith C L, Bergmann J C, Riddle T R. Current airframe propulsion integration testing techniques at AEDC[R]. AIAA-2004-6819, 2004. DOI: 10.2514/6.2004-6819
|
[4] |
Pozniak O M, Haines A B. Afterbody drag measurement at transonic speeds on a series of twin and single jet afterbodies terminating at the jet-exit[R]. NASA-CP-1266, London, 1973.
|
[5] |
Lucas E J. Evaluation of wind tunnel nozzle afterbody test techniques utilizing a modern twin engine fighter geometry at Mach numbers from 0.6 to 1.2[R]. AEDC-TR-79-63, 1980. http://www.researchgate.net/publication/235073106_Evaluation_of_Wind_Tunnel_Nozzle_Afterbody_Test_Techniques_Utilizing_a_Modern_Twin_Engine_Fighter_Geometry_at_Mach_Numbers_from_0.6_to_1.2
|
[6] |
Leavitt L D. Effect of empennage location on twin-engine afterbody/nozzle aerodynamic characteristics at mach numbers from 0.6 to 1.2[R]. NASA Technical Paper 2116, 1983. https://www.researchgate.net/publication/24385156_Effect_of_empennage_location_on_twin-engine_afterbody-nozzle_aerodynamic_characteristics_at_Mach_Numbers_from_06_to_12
|
[7] |
Wing D J. Afterbody/nozzle pressure distributions of a twin-tail twin-engine fighter with axisymmetric nozzles at Mach numbers from 0.6 to 1.2[R]. NASA Technical Paper 3509, 1995. https://www.researchgate.net/publication/24315340_Afterbodynozzle_pressure_distributions_of_a_twin-tail_twin-engine_fighter_with_axisymmetric_nozzles_at_Mach_numbers_from_06_to_12
|
[8] |
McWaters M A. F-35 conventional mode jet-effects testing methodology[R]. AIAA-2015-2404, 2015. DOI: 10.2514/6.2015-2404
|
[9] |
Smith C L, Riddle T R. Jet effects testing considerations for the next-generation long-range strike aircraft[R]. AIAA-2008-1621, 2008. DOI: 10.2514/6.2008-1621
|
[10] |
高静, 李聪, 杨勇, 等.低速风洞推力矢量试验背撑干扰特性试验研究[J].实验流体力学, 2005, 19(3):10-14. http://www.syltlx.com/CN/abstract/abstract9422.shtml
Gao J, Li C, Yang Y, et al. Research of dorsal support interference in low speed wind tunnel thrustvector test[J]. Journal of Experiments in Fluid Mechanics, 2005, 19(3):10-14. http://www.syltlx.com/CN/abstract/abstract9422.shtml
|
[11] |
贾毅, 郑芳, 黄浩, 等.低速风洞推力矢量试验技术研究[J].实验流体力学, 2014, 28(6):92-97. http://www.syltlx.com/CN/abstract/abstract10796.shtml
Jia Y, Zheng F, Huang H, et al. Research on vectoring thrust test technology in low-speed wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(6):92-97. http://www.syltlx.com/CN/abstract/abstract10796.shtml
|
[12] |
章荣平, 王勋年, 黄勇, 等.低速风洞全模TPS试验空气桥的设计与优化[J].实验流体力学, 2012, 26(6):48-52. http://syltlx.cars.org.cn/CN/article/searchArticleResult.do?searchFlag=second
Zhang R P, Wang X N, Huang Y, et al. Design and optimization of the air bridge for low speed full-span TPS test[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(6):48-52. http://syltlx.cars.org.cn/CN/article/searchArticleResult.do?searchFlag=second
|
[13] |
Becle J P, Girard D. Development of strain gage balances with air flow-through system for ONERA wind tunnels[C]. Seventy-first Simi-annual S T A Meeting, 1989.
|
[1] | CHEN Kai, LIU Xiaoyan, CHENG Pan, MAO Kun. Research on the static aero-elastic sensitivity of stiffness of flexible wing[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(6): 54-60. DOI: 10.11729/syltlx20210013 |
[2] | ZHANG Lifen, GE Xin, ZHANG Fei, LIU Zhenxia, MA Dong, LYU Weijin. An ice wind tunnel test study on the scaling law of a rotating cone[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(4): 52-59. DOI: 10.11729/syltlx20200166 |
[3] | CHAI Congcong, YI Xian, GUO Lei, WANG Jun. Prediction of ice shape characteristic parameters based on BP nerual network[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(3): 16-21. DOI: 10.11729/syltlx20200016 |
[4] | LIU Jun, CAI Jinsheng, ZHOU Fangqi. Mach number sensitivity analysis of cavity noise[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(3): 104-110. DOI: 10.11729/syltlx20190079 |
[5] | Gao Guochi, Li Baoliang, Ding Li, Wang Zixu, Ni Zhangsong. Icing wind tunnel test technology for pneumatic de-icing aircraft[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(2): 95-101. DOI: 10.11729/syltlx20180064 |
[6] | Liu Zhen, Kong Weiliang, Liu Hong, Wang Fuxin. Experimental study for effect of mean volumetric diameter on ice adhesion strength[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(2): 35-39. DOI: 10.11729/syltlx20170118 |
[7] | Zhou Zhihong, Yi Xian, Guo Long, Gui Yewei, Che Jing. Ice shape correction method based on the error of cloud parameters[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(3): 8-13. DOI: 10.11729/syltlx20160031 |
[8] | HUANG Ming-qi, LAN Bo, YANG Yong-dong, PENG Xian-min. Φ5m立式风洞直升机垂直升降试验台研制[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(5): 94-97. DOI: 10.3969/j.issn.1672-9897.2013.05.018 |
[9] | XIAO Chun-hua, HU Zhan-wei, GUI Ye-wei, LIN Gui-ping, ZHANG hui. Test study on anti-icing effects of hydrophobic coating in icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(2): 41-45,55. DOI: 10.3969/j.issn.1672-9897.2013.02.008 |
[10] | Ice slurry storage testing technology and its evaluation[J]. Journal of Experiments in Fluid Mechanics, 2003, 17(4): 62-67. DOI: 10.3969/j.issn.1672-9897.2003.04.012 |