Ji Jun, Song Xiaoyu, Deng Xiangdong, Guo Dapeng, Li Peng. Research on metric thrust jet-effects testing methodology in high-speed wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(6): 71-77. DOI: 10.11729/syltlx20160176
Citation: Ji Jun, Song Xiaoyu, Deng Xiangdong, Guo Dapeng, Li Peng. Research on metric thrust jet-effects testing methodology in high-speed wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(6): 71-77. DOI: 10.11729/syltlx20160176

Research on metric thrust jet-effects testing methodology in high-speed wind tunnel

More Information
  • Received Date: November 20, 2016
  • Revised Date: August 01, 2017
  • The metric thrust jet-effects testing methodology is introduced in FL-3 wind tunnel. Different from the sleeve type jet-effects testing methodology, the airframe is integrated with the nozzle by using the bellows system, and the balance can measure simultaneously the aerodynamic characteristics and the nozzle thrust. The problems such as nozzle geometric incomplete similarity, touching possibility between the model and the nozzle, imprecise modification of the pressure in the model cavity, etc, which exist in the sleeve type jet-effects testing methodology can be avoided by using the metric thrust methodology. The similarity theory, testing methodology and bellows technology of the metric thrust jet-effects testing are discussed in detail in this paper. The experimental results show that jet-effects under different test conditions including different nozzle pressure ratios and vectoring jets can be gained by the metric thrust jet-effects testing methodology. After further improvements of some details, the test capability can be enhanced, and the nozzle performance wind tunnel testing methodology and the thrust vector wind tunnel testing methodology can also be developed based on this methodology.
  • [1]
    Staff of the Propulsion Aerodynamics Branch. A user's guide to the langley 16-foot transonic tunnel complex[M]. NASA Technical Memorandum 102750, 1990.
    [2]
    Capone F J, Bangert L S, Asbury S C. The NASA Langley 16-foot transonic tunnel historical overview, facility description, calibration, flow characteristics, and test capabilities[R]. NASA Technical Paper 3521, 1995. http://www.researchgate.net/publication/2301696_Historical_Overview_Facility_Description_Calibration_Flow_Characteristics_and_Test_Capabilities
    [3]
    Smith C L, Bergmann J C, Riddle T R. Current airframe propulsion integration testing techniques at AEDC[R]. AIAA-2004-6819, 2004. DOI: 10.2514/6.2004-6819
    [4]
    Pozniak O M, Haines A B. Afterbody drag measurement at transonic speeds on a series of twin and single jet afterbodies terminating at the jet-exit[R]. NASA-CP-1266, London, 1973.
    [5]
    Lucas E J. Evaluation of wind tunnel nozzle afterbody test techniques utilizing a modern twin engine fighter geometry at Mach numbers from 0.6 to 1.2[R]. AEDC-TR-79-63, 1980. http://www.researchgate.net/publication/235073106_Evaluation_of_Wind_Tunnel_Nozzle_Afterbody_Test_Techniques_Utilizing_a_Modern_Twin_Engine_Fighter_Geometry_at_Mach_Numbers_from_0.6_to_1.2
    [6]
    Leavitt L D. Effect of empennage location on twin-engine afterbody/nozzle aerodynamic characteristics at mach numbers from 0.6 to 1.2[R]. NASA Technical Paper 2116, 1983. https://www.researchgate.net/publication/24385156_Effect_of_empennage_location_on_twin-engine_afterbody-nozzle_aerodynamic_characteristics_at_Mach_Numbers_from_06_to_12
    [7]
    Wing D J. Afterbody/nozzle pressure distributions of a twin-tail twin-engine fighter with axisymmetric nozzles at Mach numbers from 0.6 to 1.2[R]. NASA Technical Paper 3509, 1995. https://www.researchgate.net/publication/24315340_Afterbodynozzle_pressure_distributions_of_a_twin-tail_twin-engine_fighter_with_axisymmetric_nozzles_at_Mach_numbers_from_06_to_12
    [8]
    McWaters M A. F-35 conventional mode jet-effects testing methodology[R]. AIAA-2015-2404, 2015. DOI: 10.2514/6.2015-2404
    [9]
    Smith C L, Riddle T R. Jet effects testing considerations for the next-generation long-range strike aircraft[R]. AIAA-2008-1621, 2008. DOI: 10.2514/6.2008-1621
    [10]
    高静, 李聪, 杨勇, 等.低速风洞推力矢量试验背撑干扰特性试验研究[J].实验流体力学, 2005, 19(3):10-14. http://www.syltlx.com/CN/abstract/abstract9422.shtml

    Gao J, Li C, Yang Y, et al. Research of dorsal support interference in low speed wind tunnel thrustvector test[J]. Journal of Experiments in Fluid Mechanics, 2005, 19(3):10-14. http://www.syltlx.com/CN/abstract/abstract9422.shtml
    [11]
    贾毅, 郑芳, 黄浩, 等.低速风洞推力矢量试验技术研究[J].实验流体力学, 2014, 28(6):92-97. http://www.syltlx.com/CN/abstract/abstract10796.shtml

    Jia Y, Zheng F, Huang H, et al. Research on vectoring thrust test technology in low-speed wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(6):92-97. http://www.syltlx.com/CN/abstract/abstract10796.shtml
    [12]
    章荣平, 王勋年, 黄勇, 等.低速风洞全模TPS试验空气桥的设计与优化[J].实验流体力学, 2012, 26(6):48-52. http://syltlx.cars.org.cn/CN/article/searchArticleResult.do?searchFlag=second

    Zhang R P, Wang X N, Huang Y, et al. Design and optimization of the air bridge for low speed full-span TPS test[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(6):48-52. http://syltlx.cars.org.cn/CN/article/searchArticleResult.do?searchFlag=second
    [13]
    Becle J P, Girard D. Development of strain gage balances with air flow-through system for ONERA wind tunnels[C]. Seventy-first Simi-annual S T A Meeting, 1989.
  • Related Articles

    [1]CHEN Kai, LIU Xiaoyan, CHENG Pan, MAO Kun. Research on the static aero-elastic sensitivity of stiffness of flexible wing[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(6): 54-60. DOI: 10.11729/syltlx20210013
    [2]ZHANG Lifen, GE Xin, ZHANG Fei, LIU Zhenxia, MA Dong, LYU Weijin. An ice wind tunnel test study on the scaling law of a rotating cone[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(4): 52-59. DOI: 10.11729/syltlx20200166
    [3]CHAI Congcong, YI Xian, GUO Lei, WANG Jun. Prediction of ice shape characteristic parameters based on BP nerual network[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(3): 16-21. DOI: 10.11729/syltlx20200016
    [4]LIU Jun, CAI Jinsheng, ZHOU Fangqi. Mach number sensitivity analysis of cavity noise[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(3): 104-110. DOI: 10.11729/syltlx20190079
    [5]Gao Guochi, Li Baoliang, Ding Li, Wang Zixu, Ni Zhangsong. Icing wind tunnel test technology for pneumatic de-icing aircraft[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(2): 95-101. DOI: 10.11729/syltlx20180064
    [6]Liu Zhen, Kong Weiliang, Liu Hong, Wang Fuxin. Experimental study for effect of mean volumetric diameter on ice adhesion strength[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(2): 35-39. DOI: 10.11729/syltlx20170118
    [7]Zhou Zhihong, Yi Xian, Guo Long, Gui Yewei, Che Jing. Ice shape correction method based on the error of cloud parameters[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(3): 8-13. DOI: 10.11729/syltlx20160031
    [8]HUANG Ming-qi, LAN Bo, YANG Yong-dong, PENG Xian-min. Φ5m[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(5): 94-97. DOI: 10.3969/j.issn.1672-9897.2013.05.018
    [9]XIAO Chun-hua, HU Zhan-wei, GUI Ye-wei, LIN Gui-ping, ZHANG hui. Test study on anti-icing effects of hydrophobic coating in icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(2): 41-45,55. DOI: 10.3969/j.issn.1672-9897.2013.02.008
    [10]Ice slurry storage testing technology and its evaluation[J]. Journal of Experiments in Fluid Mechanics, 2003, 17(4): 62-67. DOI: 10.3969/j.issn.1672-9897.2003.04.012

Catalog

    Article Metrics

    Article views (168) PDF downloads (12) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close