BAO M X,MIAO B,ZHU C L. Research on the influence of the piezoelectric ceramics layout on de-icing effect[J]. Journal of Experiments in Fluid Mechanics, 2021,35(4):73-82.. DOI: 10.11729/syltlx20200091
Citation: BAO M X,MIAO B,ZHU C L. Research on the influence of the piezoelectric ceramics layout on de-icing effect[J]. Journal of Experiments in Fluid Mechanics, 2021,35(4):73-82.. DOI: 10.11729/syltlx20200091

Research on the influence of the piezoelectric ceramics layout on de-icing effect

More Information
  • Received Date: August 01, 2020
  • Revised Date: November 01, 2020
  • Available Online: August 25, 2021
  • The piezoelectric de-icing method is studied by simulation and experiment on a composite plate. The effect of piezoelectric ceramic layout (number, spacing) on the de-icing effect under the same energy consumption is studied by finite element simulation. The de-icing experiments are done under cold environment condition. The results show that when the piezoelectric ceramics with larger dimension are divided into smaller pieces according to a certain layout, the de-icing effect becomes better than that with large size single piezoelectric ceramic. As the spacing of the piezoelectric ceramics decreases, the deicing effect is further enhanced. The experimental results show that the de-icing time can be greatly shortened by increasing the input power of actuators. After dividing the large piezoelectric ceramics into four smaller ones, the de-icing effect is enhanced with the same energy consumption. The de-icing time is further shortened after the spacing of the piezoelectric ceramics is reduced.
  • [1]
    CAO Y H,WU Z L,SU Y,et al. Aircraft flight characteristics in icing conditions[J]. Progress in Aerospace Sciences,2015,74:62-80. doi: 10.1016/j.paerosci.2014.12.001
    [2]
    POLITOVICH M K. Aircraft icing caused by large supercooled droplets[J]. Journal of Applied Meteorology,1989,28(9):856-868. doi: 10.1175/1520-0450(1989)028<0856:aicbls>2.0.co;2
    [3]
    ZHU Y, PALACIOS J, ROSE J, et al. De-icing of multi-layer composite plates using ultrasonic guided waves[C]//Proc of the 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference 16th AIAA/ASME/AHS Adaptive Structures Conference. 2008. doi: 10.2514/6.2008-1862
    [4]
    LI Q Y,BAI T,ZHU C L. Numerical simulation and experiment of traveling wave piezoelectric de-icing technique[J]. Applied Mecha-nics and Materials,2014,680:154-159. doi: 10.4028/www.scientific.net/amm.680.154
    [5]
    BUDINGER M,POMMIER-BUDINGER V,BENNANI L,et al. Electromechanical resonant ice protection systems: analysis of fracture propagation mechanisms[J]. AIAA Journal,2018,56(11):4412-4422. doi: 10.2514/1.J056663
    [6]
    VILLENEUVE E,HARVEY D,ZIMCIK D,et al. Piezoelectric deicing system for rotorcraft[J]. Journal of the American Helicopter Society,2015,60(4):1-12. doi: 10.4050/jahs.60.042001
    [7]
    THOMAS S K,CASSONI R P,MACARTHUR C D. Aircraft anti-icing and de-icing techniques and modeling[J]. Journal of Aircraft,1996,33(5):841-854. doi: 10.2514/3.47027
    [8]
    BUDINGER M,POMMIER-BUDINGER V,NAPIAS G,et al. Ultrasonic ice protection systems: analytical and numerical models for architecture tradeoff[J]. Journal of Aircraft,2016,53(3):680-690. doi: 10.2514/1.C033625
    [9]
    JAFFE B, COOK W R, JAFFE H. Piezoelectric ceramics[M]. New York: Academic Press, 1971.
    [10]
    JAFFE B,ROTH R S,MARZULLO S. Piezoelectric properties of lead zirconate-lead titanate solid-solution ceramics[J]. Journal of Applied Physics,1954,25(6):809-810. doi: 10.1063/1.1721741
    [11]
    DANILIUK V,XU Y M,LIU R B,et al. Ultrasonic de-icing of wind turbine blades: Performance comparison of perspective transducers[J]. Renewable Energy,2020,145:2005-2018. doi: 10.1016/j.renene.2019.07.102
    [12]
    POMMIER-BUDINGER V,BUDINGER M,ROUSET P,et al. Electromechanical resonant ice protection systems: initiation of fractures with piezoelectric actuators[J]. AIAA Journal,2018,56(11):4400-4411. doi: 10.2514/1.J056662
    [13]
    HABIBI H,EDWARDS G,SANNASSY C,et al. Modelling and empirical development of an anti/de-icing approach for wind turbine blades through superposition of different types of vibration[J]. Cold Regions Science and Technology,2016,128:1-12. doi: 10.1016/j.coldregions.2016.04.012
    [14]
    朱永久,李清英,苗波,等. 飞机压电除冰技术的数值模拟与实验[J]. 机电信息,2015(9):102-103. doi: 10.19514/j.cnki.cn32-1628/tm.2015.09.065
    [15]
    王绍龙. 基于超声波法的风力机叶片翼型防除冰研究[D]. 哈尔滨: 东北农业大学, 2014.

    WANG S L. The research of wind turbine blade airfoil controlling ice based on ultrasonic method[D]. Harbin: Northeast Agricultural Univer-sity, 2014.
    [16]
    韩龙伸. 超声波除冰方法与试验研究[D]. 杭州: 杭州电子科技大学, 2013.

    HAN L S. Research on ultrasonic deicing method and its experi-ment[D]. Hangzhou: Hangzhou Dianzi University, 2013.
    [17]
    ZENG J,SONG B L. Research on experiment and numerical simulation of ultrasonic de-icing for wind turbine blades[J]. Renewable Energy,2017,113:706-712. doi: 10.1016/j.renene.2017.06.045
    [18]
    谭海辉,李录平,靳攀科,等. 风力机叶片超声波除冰理论与方法[J]. 中国电机工程学报,2010,30(35):112-117.

    TAN H H,LI L P,JIN P K,et al. Ultrasonic de-icing theory and method for wind turbine blades[J]. Proceedings of the CSEE,2010,30(35):112-117.
    [19]
    谭海辉. 风力机桨叶超声波防除冰理论与技术研究[D]. 长沙: 长沙理工大学, 2011.

    TAN H H. Research on ultrasonic wave anti-icing and de-icing theory and technology for wind turbine blades[D]. Changsha: Changsha University of Science & Technology, 2011.
    [20]
    WANG Z J,XU Y M,SU F,et al. A light lithium niobate transducer for the ultrasonic de-icing of wind turbine blades[J]. Renewable Energy,2016,99:1299-1305. doi: 10.1016/j.renene.2016.05.020
    [21]
    苗波,朱春玲,朱程香,等. 翼型曲面的压电振动除冰方法研究[J]. 实验流体力学,2016,30(2):46-53. DOI: 10.11729/syltlx20160010

    MIAO B,ZHU C L,ZHU C X,et al. Vibration de-icing method with piezoelectric actuators on airfoil surface[J]. Journal of Experiments in Fluid Mechanics,2016,30(2):46-53. doi: 10.11729/syltlx20160010
    [22]
    BAI T,ZHU C,MIAO B,et al. Vibration de-icing method with piezoelectric actuators[J]. Journal of Vibroengineering,2015,17(1):61-73.
    [23]
    DUTTON S, KELLY D, BAKER A. Composite materials for aircraft structures, second edition[M]. Reston: American Institute of Aeronau-tics and Astronautics, 2004. doi: 10.2514/4.861680
    [24]
    孟光, 瞿叶高. 复合材料结构振动与声学[M]. 北京: 国防工业出版社, 2017.

    MENG G, QU Y G. Vibration and acoustics of composite structures[M]. Beijing: National Defense Industry Press, 2017.
    [25]
    苗波,朱春玲,朱程香. 平板压电除冰系统中压电元件排布规律研究[J]. 空气动力学学报,2016,34(6):732-737. DOI: 10.7638/kqdlxxb-2015.0216

    MIAO B,ZHU C L,ZHU C X. Research on placement of piezoelectric actuators in plate piezoelectric de-icing system[J]. Acta Aerodynamica Sinica,2016,34(6):732-737. doi: 10.7638/kqdlxxb-2015.0216
    [26]
    苗波. 翼型压电振动除冰理论和实验研究[D]. 南京: 南京航空航天大学, 2016.

    MIAO B. Research on theories and experiments of airfoil piezo-actuated vibratory de-icing method[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016.
    [27]
    HABIBI H,CHENG L,ZHENG H T,et al. A dual de-icing system for wind turbine blades combining high-power ultrasonic guided waves and low-frequency forced vibrations[J]. Renewable Energy,2015,83:859-870. doi: 10.1016/j.renene.2015.05.025
    [28]
    钱若力,穆晓光,王轩,等. 含褶皱缺陷玻璃纤维增强复合材料层合板拉伸渐进失效分析[J]. 复合材料科学与工程,2020(7):13-19, 52. DOI: 10.3969/j.issn.1003-0999.2020.07.002

    QIAN R L,MU X G,WANG X,et al. Progressive failure analysis of tensile strength of glass fiber reinforced composite laminates with wrinkle defects[J]. Composites Science and Engineering,2020(7):13-19, 52. doi: 10.3969/j.issn.1003-0999.2020.07.002
  • Related Articles

    [1]ZHANG Hongjian, ZHANG Yanxin, XIONG Jianjun, ZHAO Zhao, RAN Lin, YI Xian. Numerical simulation and experimental research of Lamb wave propagation characteristics in ice[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(2): 68-77. DOI: 10.11729/syltlx20210170
    [2]DU Baihe, ZHANG Songhe, GE Qiang, WANG Maogang. Study on flow field characteristics of inert gas-air hybrid arc[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(5): 69-75. DOI: 10.11729/syltlx20210052
    [3]XIE Aimin, XING Yanchang, WANG Min, BU Shaoqing. 1.2 m large-field focusing schlieren technique[J]. Journal of Experiments in Fluid Mechanics. DOI: 10.11729/syltlx20220047
    [4]GUO Xiangdong, ZHANG Pingtao, ZHANG Ke, GUO Qiling, GUO Long. Improvement and evaluation of thermal flow-field quality in CARDC icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(4): 41-51. DOI: 10.11729/syltlx20200118
    [5]Xu Kejing, Chang Juntao, Li Nan, Bao Wen, Yu Daren. Recent research progress on motion characteristics and flow mechanism of shock train in an isolator with background waves[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 31-42. DOI: 10.11729/syltlx20180196
    [6]Xie Aimin, Bu Shaoqing, Luo Jinyang. Primary study of large-field focusing schlieren technique based on tiled light sources[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6): 68-73. DOI: 10.11729/syltlx20180012
    [7]Sha Xinguo, Wen Shuai, Yuan Minglun, Lu Hongbo, Ji Feng. Visualization of shock wave in hypersonic flow using electric discharge[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(3): 87-93. DOI: 10.11729/syltlx20170106
    [8]Chen Fei, Sun Bin. The study of dynamic differential pressure signal of gas-liquid two-phase flow based on adaptive Chirplet transformation[J]. Journal of Experiments in Fluid Mechanics, 2015, (6): 59-66. DOI: 10.11729/syltlx20140113
    [9]JIA Xiao-na, CHEN Xu, LI Wei-hua, ZUO Bing-guang. The application of synthetic schlieren technique in the experimental study of internal wave[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(4): 92-96. DOI: 10.3969/j.issn.1672-9897.2013.04.017
    [10]ZHU Zi-hua, HU Shi-jun, HU Da-peng, LIU Xue-wu. Experimental study and simulation of swirling jet gas wave refrigerator[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(3): 35-37,65. DOI: 10.3969/j.issn.1672-9897.2007.03.007
  • Cited by

    Periodical cited type(3)

    1. 王一平,徐司雨,姚二岗,李恒,张洋,于瑾,赵凤起. 先进光学诊断技术在含能材料燃烧测试中的应用进展. 火炸药学报. 2024(01): 1-16 .
    2. 吴凌昊,石小江,李杨,雷庆春,范玮. 超燃冲压发动机燃烧室光学测量技术发展现状. 计测技术. 2024(03): 57-71 .
    3. 袁勋,于欣,彭江波,曾徽,欧东斌. 电弧风洞NO平面激光诱导荧光可视化方法与试验验证. 航空学报. 2023(19): 73-82 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (781) PDF downloads (40) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close