GUO X D,ZHANG P T,ZHANG K,et al. Improvement and evaluation of thermal flow-field quality in CARDC icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2021,35(4):41-51.. DOI: 10.11729/syltlx20200118
Citation: GUO X D,ZHANG P T,ZHANG K,et al. Improvement and evaluation of thermal flow-field quality in CARDC icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2021,35(4):41-51.. DOI: 10.11729/syltlx20200118

Improvement and evaluation of thermal flow-field quality in CARDC icing wind tunnel

More Information
  • Received Date: October 11, 2020
  • Revised Date: November 03, 2020
  • Available Online: August 25, 2021
  • The compliance of the thermal flow field quality of the large icing wind tunnel is the foundation of its airworthiness application. In order to understand the effects of upgrading of the refrigeration system on the thermal flow field quality in the CARDC icing wind tunnel, a comprehensive verification test is carried out for the main test section. Then, the thermal flow field qualities, both at the exit of the heat exchanger and in the test section, are evaluated. Finally, the correction relationship of the airflow total temperature and the thermal flow field operating envelop are achieved. Results show that the thermal flow field qualities, both at the exit of the heat exchanger and in the test section, are better than the quality index given in SAE ARP5905, under the main test conditions. Compared with the test results in 2019, the spatial uniformity in the model area of the test section is greatly enhanced. Particularly, non-uniform temperature peak points exceeding the standard in the model area are eliminated under the conditions of high airspeed and low total temperature. Finally, the upgrading of the refrigeration system in 2020 greatly extends the thermal flow field operating envelop, so that the temperature simulation capability of the CARDC icing wind tunnel is enhanced significantly.
  • [1]
    林贵平, 卜雪琴, 申晓斌, 等. 飞机结冰与防冰技术[M]. 北京: 北京航空航天大学出版社, 2016.

    LIN G P, BU X Q, SHEN X B, et al. Aircraft icing and anti-icing technology[M]. Beijing: Beihang University Press, 2016.
    [2]
    KING-STEEN L E, IDE R F, Van ZANTE J F, et al. NASA Glenn icing research tunnel: 2014 and 2015 cloud calibration procedures and results[R]. NASA/TM-2015-218758, 2015.
    [3]
    ESPOSITO B M, RAGNI A, FERRIGNO F, et al. Cloud calibration update of the CIRA icing wind tunnel[R]. SAE Technical Paper Series 2003-01-2312, 2003. doi: 10.4271/2003-01-2132
    [4]
    郭向东,张平涛,赵献礼,等. 大型结冰风洞热流场符合性验证[J]. 实验流体力学,2020,34(5):79-88. DOI: 10.11729/syltlx20190113

    GUO X D,ZHANG P T,ZHAO X L,et al. The compliance verification of thermodynamic flowfield in the large icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics,2020,34(5):79-88. doi: 10.11729/syltlx20190113
    [5]
    IRVINE T, KEVDZIJA S, SHELDON D, et al. Overview of the icing and flow quality improvements program for the NASA-Glenn icing research tunnel[R]. AIAA-2001-0229, 2001. doi: 10.2514/6.2001-229
    [6]
    GONSALEZ J, ARRINGTON E, III M C. Quality surveys of the NASA Glenn icing research tunnel(2000 tests)[R]. AIAA-2001-0232, 2001. doi: 10.2514/6.2001-232
    [7]
    GONSALEZ J, ARRINGTON E, CURRY M. Thermal calibration of the NASA Glenn icing research tunnel (2000 tests)[R]. AIAA-2001-0233, 2001. doi: 10.2514/6.2001-233
    [8]
    ARRINGTON E, GONSALEZ J. Improvements to the total temperature calibration of the NASA Glenn icing research tunnel[R]. AIAA 2005-4276, 2005. doi: 10.2514/6.2005-4276
    [9]
    OLDENBURG J, IDE R, DEL ROSO R, et al. Improvements to the NASA Glenn icing research tunnel's air temperature measurement system[R]. AIAA 2006-1222, 2006. doi: 10.2514/6.2006-1222
    [10]
    PASTOR-BARSI C, ARRINGTON A. Aero-thermal calibration of the NASA Glenn icing research tunnel (2012 test)[R]. AIAA 2012-2934, 2012. doi: 10.2514/6.2012-2934
    [11]
    STEEN L C, Van ZANTE J, BROEREN A, et al. Flow quality surveys in the settling chamber of the NASA Glenn icing research tunnel (2011 tests)[R]. AIAA 2012-2935, 2012. doi: 10.2514/6.2012-2935
    [12]
    CHINTAMANI S, BELTER D. Design features and flow qualities of the Boeing research aerodynamic icing tunnel[R]. AIAA 95-0540, 1994. doi: 10.2514/6.1994-540
    [13]
    IRANI E, AL-KHALIL K. Calibration and recent upgrades to the cox icing wind tunnel[R]. AIAA 2008-437, 2008. doi: 10.2514/6.2008-437
    [14]
    郭向东,张平涛,赵照,等. 大型结冰风洞云雾场适航应用符合性验证[J]. 航空学报,2020,41(10):123879.

    GUO X D,ZHANG P T,ZHAO Z,et al. Airworthiness application compliance verification of cloud flowfield in large icing wind tunnel[J]. Acta Aeronautica et Astronautica Sinica,2020,41(10):123879.
    [15]
    郭向东,柳庆林,赖庆仁,等. 大型结冰风洞气流场适航符合性验证[J]. 空气动力学学报,2021,39(2):184-195. DOI: 10.7638/kqdlxxb-2019.0086

    GUO X D,LIU Q L,LAI Q R,et al. Airworthiness compliance verification of aerodynamic flowfield of a large-scale icing wind tunnel[J]. Acta Aerodynamica Sinica,2021,39(2):184-195. doi: 10.7638/kqdlxxb-2019.0086
    [16]
    AC-9C Aircraft Icing Technology Committee. SAE ARP 5905-2003, Calibration and acceptance of icing wind tunnels[S]. Warrendale, PA: SAE International, 2003.
  • Related Articles

    [1]DU Baihe, ZHANG Songhe, GE Qiang, WANG Maogang. Study on flow field characteristics of inert gas-air hybrid arc[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(5): 69-75. DOI: 10.11729/syltlx20210052
    [2]ZHANG Xinghuan, ZHANG Pingtao, PENG Bo, YI Xian. Prediction of icing wind tunnel temperature field with machine learning[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(5): 8-15. DOI: 10.11729/syltlx20210196
    [3]Fu Cheng, Zhao Bo, Xu Dachuan, Liao Daxiong, Pei Haitao, Zhu Bo, Qin Honggang. Investigation on flow turbulent characteristics of plate-fin and tube-fin heat exchanger[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(6): 22-27. DOI: 10.11729/syltlx20190036
    [4]Wang Feng, Xu Jinglei, Wang Yangsheng. Study of flow field characteristics of an over-under TBCC exhaust system during mode transition process[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 68-75. DOI: 10.11729/syltlx20190037
    [5]Gong Jishuang, Zhou Lin, Zhang Yining, Teng Honghui. Investigation on flow field structure of rotating detonation using the method of characteristics[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(1): 89-96. DOI: 10.11729/syltlx20180072
    [6]Liao Daxiong, Chen Jiming, Zheng Juan, Chen Qin, Pei Haitao, Wu Shenghao. General performance of 0.6m continuous transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6): 88-93. DOI: 10.11729/syltlx20170086
    [7]Yang Hong, Luo Yue, Wu Dong, Zhou Ping. Study on supersonic turbulence plate ablation flow field in arc heater[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(4): 72-77. DOI: 10.11729/syltlx20170181
    [8]Yu Mingxing, Bai Shuxin, Xu Xiaoliang, Cao Zhanwei. Research on method for evaluating the thermal protective performance of non-catalysis material in non-equilibrium flow[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(4): 84-89. DOI: 10.11729/syltlx20170084
    [9]Luo Yue, Zhou Wei, Yang Hong, Chen Wei. CFD analysis of the arc heater turbulent flow field of flat plate testing[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(2): 86-92. DOI: 10.11729/syltlx20160088
    [10]Yang Bo, Liu Sen. Investigation of the performance of flow field in supersonic/hypersonic wind tunnel with different test section geometry configurations[J]. Journal of Experiments in Fluid Mechanics, 2014, (4): 59-64. DOI: 10.11729/syltlx20130023
  • Cited by

    Periodical cited type(18)

    1. 韩笑,高创,郑怡彤,刘小兵. 切角凹槽矩形截面桥塔的气动特性试验研究. 石家庄铁道大学学报(自然科学版). 2024(01): 9-15+23 .
    2. 白桦,刘博祥,姬乃川,李加武. 节段模型二元端板合理尺寸估算方法. 振动与冲击. 2023(02): 312-320 .
    3. 王仰雪,刘庆宽,靖洪淼,李震,孙一飞. 倾斜栏杆对流线型箱梁涡激振动性能影响的试验研究. 振动与冲击. 2023(06): 232-239+254 .
    4. 于畅,仇法梅,田学东,杨群,刘小兵. 圆角矩形柱平均气动力特性的雷诺数效应试验研究. 石家庄铁道大学学报(自然科学版). 2023(02): 29-34 .
    5. 杨群,于畅,刘小兵,刘庆宽. 不同圆角率的方形断面斯特罗哈数的雷诺数效应研究. 振动与冲击. 2023(11): 223-231 .
    6. 刘庆宽,王仰雪,孙一飞,李震,韩原,靖洪淼. 栏杆高度对流线型箱梁涡振性能影响的试验研究. 湖南大学学报(自然科学版). 2023(07): 140-150 .
    7. 刘路路,杨皓然,邹云峰,何旭辉,韩艳,陈志强. 公铁同层双幅非对称主梁气动干扰特性研究. 铁道科学与工程学报. 2023(10): 3861-3872 .
    8. 杨群,于畅,于文文,刘小兵. 圆角方柱气动特性的风洞试验研究. 振动与冲击. 2023(24): 59-68 .
    9. 韩振,李波,甄伟,杨庆山,田玉基. 宽厚比为5的超高层建筑风荷载特性研究. 哈尔滨工程大学学报. 2022(02): 196-202 .
    10. 张庆华,马文勇,杨杰,张彦,周帅伟. 不同风倾角下典型等边角钢静风力风洞试验研究. 振动工程学报. 2022(02): 277-283 .
    11. 白桦,王涵,姬乃川,李加武. 节段模型长宽比对风洞测力试验及计算分析的影响. 中国公路学报. 2022(08): 202-212 .
    12. 杨群,刘庆宽,韩瑞,刘小兵. 不同圆角率的方形断面气动特性的雷诺数效应. 振动与冲击. 2020(04): 150-156 .
    13. 沈国辉,姚剑锋,郭勇,邢月龙,楼文娟. 直径30 cm圆柱的气动力参数和绕流特性研究. 振动与冲击. 2020(06): 22-28 .
    14. 温青,池俊豪,华旭刚,王修勇,孙洪鑫. 端部条件和展弦比对矩形断面节段模型气动力特征的影响. 实验流体力学. 2020(04): 36-43 . 本站查看
    15. 任若松,梁新华,刘小兵,马文勇,刘庆宽. 准流线型桥梁断面气动力特性的雷诺数效应研究. 工程力学. 2020(S1): 139-144+167 .
    16. 李海飞,梁新华,孙一飞,崔会敏,刘庆宽. 流线型桥梁断面表面脉动风荷载特性研究. 工程力学. 2020(S1): 242-248+260 .
    17. 马文勇,汪冠亚,郑熙,陈铁,李智,张程远,方平治. 端部状态对斜置圆柱气动力分布的影响. 实验流体力学. 2019(02): 43-50 . 本站查看
    31. 杨群,刘庆宽,孙亚松,刘小兵. 圆角方形断面气动特性试验. 振动.测试与诊断. 2020(01): 140-147+208 .

    Other cited types(16)

Catalog

    Article Metrics

    Article views (549) PDF downloads (59) Cited by(34)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close