DU B H,ZHANG S H,GE Q,et al. Study on flow field characteristics of inert gas-air hybrid arc[J]. Journal of Experiments in Fluid Mechanics, 2022,36(5):69-75.. DOI: 10.11729/syltlx20210052
Citation: DU B H,ZHANG S H,GE Q,et al. Study on flow field characteristics of inert gas-air hybrid arc[J]. Journal of Experiments in Fluid Mechanics, 2022,36(5):69-75.. DOI: 10.11729/syltlx20210052

Study on flow field characteristics of inert gas-air hybrid arc

More Information
  • Received Date: May 26, 2021
  • Revised Date: July 15, 2021
  • Accepted Date: July 28, 2021
  • Adding a small mass flow rate of inert gas into the air arc flow field does not affect the performance evaluation of the thermal protection materials. In order to obtain the flow field characteristics of the inert gas-air hybrid arc, the flow field parameters of the supersonic nozzle exit were studied by controlling the arc current and inert gas mass flow rate in an arc heated wind tunnel. The experimental results show that the enthalpy and stagnation point heat flux of the helium-air hybrid arc are 6.07% and 1.02% higher than that of the air arc flow field respectively under the condition of helium mass ratio of 11.46%, total mass flow rate of 0.2 kg/s and arc current of 1300 A; the enthalpy and stagnation point pressure of the hybrid arc with inert gases such as neon, argon and krypton are lower than that of the air arc at the exit of the supersonic nozzle, and increase with the increase of mixed gas flow rate and arc current. The increase degree is related to the proportion of the added gas medium and total mass flow rate.
  • [1]
    GOLDSTEIN E M. Plasma arc testing of hypervelocity materials[J]. Journal of Spacecraft and Rockets,1968,5(10):1232-1233. doi: 10.2514/3.29459
    [2]
    AMUNDSON M, SMITH D. Ground test and evaluation methodologies and techniques for the development of endoatmospheric interceptors[C]//Proc of the Annual Interceptor Technology Conference. 1993. doi: 10.2514/6.1993-2679
    [3]
    BALTER-PETERSON A, NICHOLS F, MIFSUD B, et al. Arc jet testing in NASA Ames Research Center thermophysics facilities[C]//Proc of the AlAA 4th International Aerospace Planes Conference. 1992. doi: 10.2514/6.1992-5041
    [4]
    Dorrance W H. Viscous hypersonic flow[M]. New York: McGraw-Hill, 1962: 69-101
    [5]
    孟显,李腾,潘文霞,等. 层流氩等离子体射流温度的测量[J]. 强激光与粒子束,2011,23(3):783-786. DOI: 10.3788/HPLPB20112303.0783

    MENG X,LI T,PAN W X,et al. Temperature measurements of laminar argon plasma jet[J]. High Power Laser and Particle Beams,2011,23(3):783-786. doi: 10.3788/HPLPB20112303.0783
    [6]
    潘文霞,孟显,吴承康. 直流纯氩层流等离子体射流的长度变化[J]. 工程热物理学报,2005,26(4):677-679. DOI: 10.3321/j.issn:0253-231X.2005.04.042

    PAN W X,MENG X,WU C K. Length change of dc laminar-flow argon plasma-jet[J]. Journal of Engineering Thermophysics,2005,26(4):677-679. doi: 10.3321/j.issn:0253-231X.2005.04.042
    [7]
    查柏林,江鹏,袁晓静,等. 等离子体射流特性分析[J]. 核聚变与等离子体物理,2012,32(2):187-192. DOI: 10.3969/j.issn.0254-6086.2012.02.016

    ZHA B L,JIANG P,YUAN X J,et al. The study of plasma jet characteristics[J]. Nuclear Fusion and Plasma Physics,2012,32(2):187-192. doi: 10.3969/j.issn.0254-6086.2012.02.016
    [8]
    赵文华,田阔,刘笛,等. 电弧等离子体射流核脉动及射流形貌[J]. 清华大学学报(自然科学版),2002,42(4):442-445. DOI: 10.3321/j.issn:1000-0054.2002.04.005

    ZHAO W H,TIAN K,LIU D,et al. Fluctuations of the core and the jet shape of an arc plasma spraying jet[J]. Journal of Tsinghua University (Science and Technology),2002,42(4):442-445. doi: 10.3321/j.issn:1000-0054.2002.04.005
    [9]
    严建华,屠昕,马增益,等. 大气压直流氩等离子体射流工作特性研究[J]. 物理学报,2006,55(7):3451-3457. DOI: 10.3321/j.issn:1000-3290.2006.07.042

    YAN J H,TU X,MA Z Y,et al. Characterization of DC argon plasma jet at atmospheric pressure[J]. Acta Physica Sinica,2006,55(7):3451-3457. doi: 10.3321/j.issn:1000-3290.2006.07.042
    [10]
    雷枭,方志,邵涛,等. 大气压氖气介质阻挡放电脉冲等离子射流特性[J]. 强激光与粒子束,2012,24(5):1206-1210. DOI: 10.3788/HPLPB20122405.1206

    LEI X,FANG Z,SHAO T,et al. Characterization of dielectric barrier discharge pulse plasma jet in neon at atmospheric pressure[J]. High Power Laser and Particle Beams,2012,24(5):1206-1210. doi: 10.3788/HPLPB20122405.1206
    [11]
    牛铮,邵涛,章程,等. 纳秒脉冲放电等离子体射流特性[J]. 强激光与粒子束,2012,24(3):617-620. DOI: 10.3788/HPLPB20122403.0617

    NIU Z,SHAO T,ZHANG C,et al. Characteristics of nanosecond-pulse atmospheric pressure plasma jet[J]. High Power Laser and Particle Beams,2012,24(3):617-620. doi: 10.3788/HPLPB20122403.0617
    [12]
    向勇,余德平,曹修全,等. 直流纯氮层流等离子体射流特性的实验研究[J]. 强激光与粒子束,2014,26(9):092005. DOI: 10.11884/HPLPB201426.092005

    XIANG Y,YU D P,CAO X Q,et al. Experimental study on characteristics of direct-current laminar-flow nitrogen plasma-jet[J]. High Power Laser and Particle Beams,2014,26(9):092005. doi: 10.11884/HPLPB201426.092005
    [13]
    王德文,杨月诚,査柏林. 氩/氢等离子射流特性研究[J]. 四川兵工学报,2013,34(7):141-144.

    WANG D W,YANG Y C,ZHA B L. Study on characteristics of Ar/H2 plasma jet[J]. Journal of Sichuan Ordnance,2013,34(7):141-144.
    [14]
    DO H, PASSARO A, LEE T, et al. Ethylene flame dynamics in an arc-heated hypersonic wind tunnel[R]. AIAA 2013-0700, 2013. doi: 10.2514/6.2013-700
    [15]
    XIN C,WU J W,LIU B,et al. Plasma characteristics of DC hydrogen—nitrogen mixed gas arc under high pressure[J]. IEEE Transactions on Plasma Science,2014,42(10):2722-2723. doi: 10.1109/TPS.2014.2340432
    [16]
    BUBLIEVSKY A F,GORBUNOV A V,MARQUESI A R,et al. Generalization of the total current-voltage characteristics for transferred arc plasma torch with steam and air plasmas based on the analytical anisotropic model[J]. IEEE Transactions on Plasma Science,2015,43(10):3707-3715. doi: 10.1109/TPS.2015.2469675
    [17]
    HAMMOCK G L. Expansion of the AEDC H2 arc heater facility test envelope using cold-air mixing[R]. AIAA 2017-4527 2017. doi: 10.2514/6.2017-4527
  • Related Articles

    [1]ZHU Chang, XU Guoliang, ZHANG Chengjian, Yang Yifan, WU Jie. Experimental investigation of crossflow instability upon a 6 degree hypersonic sharp cone model with rough surface[J]. Journal of Experiments in Fluid Mechanics. DOI: 10.11729/syltlx20240011
    [2]GAO Nan, LIU Xuanhe. A preliminary study on calibration-free hot-wire anemometry method[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(5): 1-8. DOI: 10.11729/syltlx20230004
    [3]ZHU Bo, CHEN Jiming, WU Wei, PEI Haitao. Experimental investigation of turbulence intensity measurement in continuous transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics. DOI: 10.11729/syltlx20220034
    [4]Fu Cheng, Zhao Bo, Xu Dachuan, Liao Daxiong, Pei Haitao, Zhu Bo, Qin Honggang. Investigation on flow turbulent characteristics of plate-fin and tube-fin heat exchanger[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(6): 22-27. DOI: 10.11729/syltlx20190036
    [5]Yu Tao, Wang Junpeng, Liu Xianghong, Zhao Jiaquan, Wu Jie. Measurements and data processing technology of freestream fluctuations in hypersonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(5): 49-56. DOI: 10.11729/syltlx20180142
    [6]Ma Husheng, Liu Huilong, Qin Tianchao, Du Wei, Shi Peijie, Ren Siyuan. Development of hot-wire probe calibration wind tunnel based on compressible fluid[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(1): 93-99. DOI: 10.11729/syltlx20160108
    [7]Zhu Bo, Peng Qiang, Tang Gengsheng. Digital signal process of low turbulence intensity based on EMD[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(5): 74-79. DOI: 10.11729/syltlx20150148
    [8]Wang Xin, Yang Ying, Ma Yunchi, Ma Weiwei. Research on synchronous measurement of temperature and velocity in melt-blowing flow field based on hot-wire anemometer[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(1): 91-96. DOI: 10.11729/syltlx20150068
    [9]LUN Li-yong, CHEN Hou-lei, CAI Jing-hui. Investigation on calibration method of hot-wire anemometer in high pressure reciprocating flow[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(3): 87-91. DOI: 10.3969/j.issn.1672-9897.2010.03.018
    [10]SHENG Sen-zhi, ZHUANG Yong-ji, LIU Zong-yan. A new type of hot-wire/film anemometer[J]. Journal of Experiments in Fluid Mechanics, 2009, 23(1): 89-93. DOI: 10.3969/j.issn.1672-9897.2009.01.020
  • Cited by

    Periodical cited type(3)

    1. 宋光韬,葛建辉,马钊,王恒,吕郑,徐惊雷. 并联TBCC排气系统稳态与模态转换实验研究. 推进技术. 2024(04): 51-61 .
    2. 赵春梅,王恒,王俊,钟世林,蒲永彬,任亚强. 涡轮冲压组合喷管运动机构布局研究综述. 航空发动机. 2024(06): 13-18 .
    3. 彭波,徐惊雷. 并联TBCC排气系统模态转换过程动态特性研究. 机械制造与自动化. 2022(05): 194-198 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (464) PDF downloads (29) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close