FU Junquan, SHI Zhiwei, CHEN Jie, ZHOU Mengbei, WU Dawei, PAN Lijun. Departure characteristics of blended-wing-body aircraft[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(6): 32-37. DOI: 10.11729/syltlx20190110
Citation: FU Junquan, SHI Zhiwei, CHEN Jie, ZHOU Mengbei, WU Dawei, PAN Lijun. Departure characteristics of blended-wing-body aircraft[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(6): 32-37. DOI: 10.11729/syltlx20190110

Departure characteristics of blended-wing-body aircraft

More Information
  • Received Date: September 09, 2019
  • Revised Date: November 10, 2019
  • Static force measurements of blended-wing-body aircraft at high angles of attack were carried out in the 1 m low speed wind tunnel of Nanjing University of Aeronautics and Astronautics. By fully mining and analyzing the experimental results, the approximate initial departure angle of attack and departure region of BWB aircraft are obtained by using multiple criteria, including the static stability derivative, the dynamic directional stability parameter, the lateral control departure parameter and the Weissman chart. Besides, the spin sensitive region of BWB aircraft is predicted. At the same time, the departure is simulated by the virtual flight test in wind tunnel. The results show that the lateral stability of BWB aircraft is poor, and the non-command roll motion may occur at a very small angle of attack, which is also the main reason for the divergence of the departure. And the departure characteristics obtained from the virtual flight test and these stability criteria are in good consistency, which verifies the reliability of the virtual flight test in departure characteristics research.
  • [1]
    AMMAR S, LEGROS C, TRÉPANIER J-Y. Conceptual design, performance and stability analysis of a 200 passengers Blended Wing Body aircraft[J]. Aerospace Science and Technology, 2017, 71:325-336. DOI: 10.1016/j.ast.2017.09.037
    [2]
    ORDOUKHANIAN E, MADNI A M. Blended Wing Body architecting and design:current status and future prospects[J]. Procedia Computer Science, 2014, 28:619-625. DOI: 10.1016/j.procs.2014.03.075
    [3]
    朱自强, 王晓璐, 吴宗成, 等.民机的一种新型布局形式:翼身融合体飞机[J].航空学报, 2008, 29(1):49-59. DOI: 10.3321/j.issn:1000-6893.2008.01.007

    ZHU Z Q, WANG X L, WU Z C, et al. A new type of transport-blended wing body aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(1):49-59. DOI: 10.3321/j.issn:1000-6893.2008.01.007
    [4]
    付军泉, 史志伟, 周梦贝, 等.一种翼身融合飞行器的失速特性研究[J].航空学报, 2020, 41(1):123176. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202001005.htm

    FU J Q, SHI Z W, ZHOU M B, et al. Stall characteristics research of blended-wing-body aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(1):123176. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202001005.htm
    [5]
    QIN N, VAVALLE A, LE MOIGNE A, et al. Aerodynamic considerations of blended wing body aircraft[J]. Progress in Aerospace Sciences, 2004, 40(6):321-343. DOI: 10.1016/j.paerosci.2004.08.001
    [6]
    LI P F, ZHANG B Q, CHEN Y C, et al. Aerodynamic design methodology for blended wing body transport[J]. Chinese Journal of Aeronautics, 2012, 25(4):508-516. DOI: 10.1016/S1000-9361(11)60414-7
    [7]
    LYU Z J, MARTINS J R R A. Aerodynamic design optimization studies of a blended-wing-body aircraft[J]. Journal of Aircraft, 2014, 51(5):1604-1617. DOI: 10.2514/1.C032491
    [8]
    LARKIN G, COATES G. A design analysis of vertical stabilisers for Blended Wing Body aircraft[J]. Aerospace Science and Technology, 2017, 64:237-252. DOI: 10.1016/j.ast.2017.02.001
    [9]
    JOHNSTON D E, HOGGE J R. Nonsymmetric flight influence on high-angle-of-attack handling and departure[J]. Journal of Aircraft, 1976, 13(2):112-118. DOI: 10.2514/3.58639
    [10]
    马军, 宋晋, 刘蓓, 等.立式风洞全视场尾旋姿态测量技术研究[J].实验流体力学, 2016, 30(6):66-70, 104. http://www.syltlx.com/CN/abstract/abstract10982.shtml

    MA J, SONG J, LIU B, et al. Design and implementation for full field of view measurement scheme in vertical wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(6):66-70, 104. http://www.syltlx.com/CN/abstract/abstract10982.shtml
    [11]
    杨文, 卜忱, 眭建军.某复杂构型飞机偏航-滚转耦合运动非定常气动力特性实验研究[J].实验流体力学, 2016, 30(3):61-65. http://www.syltlx.com/CN/abstract/abstract10935.shtml

    YANG W, BU C, SUI J J. Investigation of the unsteady aerodynamic characteristics of a fighter with complex configuration undergoing yaw-roll coupling oscillation motion[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(3):61-65. http://www.syltlx.com/CN/abstract/abstract10935.shtml
    [12]
    许光明.飞机失速/偏离问题研究的技术途径[J].气动实验与测量控制, 1990, 4(3):1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC199003000.htm

    XU G M. The technical approaches to investigation of stall/departure problems of aircraft[J]. Aerodynamic experiment and measurement & control, 1990, 4(3):1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-LTLC199003000.htm
    [13]
    张洪.飞机大迎角飞行稳定性判据分析[J].航空学报, 1988, 9(10):B502-505. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB198810012.htm

    ZHANG H. Flight stability criteria analysis of aircraft at high angles-of-attack[J]. Acta Aeronautica et Astronautica Sinica, 1988, 9(10):B502-505. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB198810012.htm
    [14]
    李树有, 王启, 张培田.飞机失速/尾旋特性的预测和试验研究[J].飞行力学, 2000, 18(3):42-45. DOI: 10.3969/j.issn.1002-0853.2000.03.011

    LI S Y, WANG Q, ZHANG P T. Prediction and test of aircraft stall/spin characteristics[J]. Flight Dynamics, 2000, 18(3):42-45. DOI: 10.3969/j.issn.1002-0853.2000.03.011
    [15]
    李永富.用风洞技术预测飞机的失速/尾旋特性[J].航空与航天, 2004(4):12-15, 18.
    [16]
    耿玺, 史志伟.面向过失速机动的风洞动态试验相似准则探讨[J].实验流体力学, 2011, 25(3):41-45. DOI: 10.3969/j.issn.1672-9897.2011.03.010

    GENG X, SHI Z W. Similarity criterion of the wind tunnel test for the post-stall maneuver[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(3):41-45. DOI: 10.3969/j.issn.1672-9897.2011.03.010
    [17]
    郭林亮, 祝明红, 傅澔, 等.水平风洞中开展飞机尾旋特性研究的理论分析[J].航空学报, 2018, 39(6):79-90. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201806008.htm

    GUO L L, ZHU M H, FU H, et al. Theoretical analysis of research on aircraft spin characteristic in horizontal wind tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(6):79-90. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201806008.htm
    [18]
    LUTZE F H, DURHAM W C, MASON W H. Unified development of lateral-directional departure criteria[J]. Journal of Guidance, Control, and Dynamics, 1996, 19(2):489-493. DOI: 10.2514/3.21644
    [19]
    MENGALI G, GIULIETTI F. Unified algebraic approach to approximation of lateral-directional modes and departure criteria[J]. Journal of Guidance, Control, and Dynamics, 2004, 27(4):724-728. DOI: 10.2514/1.6606
    [20]
    Tinger H L. Departure resistance and spin characteristics of the F-15 S/MTD[R]. AIAA-89-0012, 1989.
    [21]
    ARAUJO-ESTRADA S A, LOWENBERG M H, NEILD S, et al. Evaluation of aircraft model upset behaviour using wind tunnel manoeuvre rig[R]. AIAA 2015-0750, 2015.
    [22]
    LAWRENCE F, MILLS B. Status update of the AEDC wind tunnel Virtual Flight Testing development program[R]. AIAA 2002-0168, 2002.
  • Related Articles

    [1]ZHANG Hongjian, ZHANG Yanxin, XIONG Jianjun, ZHAO Zhao, RAN Lin, YI Xian. Numerical simulation and experimental research of Lamb wave propagation characteristics in ice[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(2): 68-77. DOI: 10.11729/syltlx20210170
    [2]DU Baihe, ZHANG Songhe, GE Qiang, WANG Maogang. Study on flow field characteristics of inert gas-air hybrid arc[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(5): 69-75. DOI: 10.11729/syltlx20210052
    [3]XIE Aimin, XING Yanchang, WANG Min, BU Shaoqing. 1.2 m large-field focusing schlieren technique[J]. Journal of Experiments in Fluid Mechanics. DOI: 10.11729/syltlx20220047
    [4]GUO Xiangdong, ZHANG Pingtao, ZHANG Ke, GUO Qiling, GUO Long. Improvement and evaluation of thermal flow-field quality in CARDC icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(4): 41-51. DOI: 10.11729/syltlx20200118
    [5]Xu Kejing, Chang Juntao, Li Nan, Bao Wen, Yu Daren. Recent research progress on motion characteristics and flow mechanism of shock train in an isolator with background waves[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 31-42. DOI: 10.11729/syltlx20180196
    [6]Xie Aimin, Bu Shaoqing, Luo Jinyang. Primary study of large-field focusing schlieren technique based on tiled light sources[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6): 68-73. DOI: 10.11729/syltlx20180012
    [7]Sha Xinguo, Wen Shuai, Yuan Minglun, Lu Hongbo, Ji Feng. Visualization of shock wave in hypersonic flow using electric discharge[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(3): 87-93. DOI: 10.11729/syltlx20170106
    [8]Chen Fei, Sun Bin. The study of dynamic differential pressure signal of gas-liquid two-phase flow based on adaptive Chirplet transformation[J]. Journal of Experiments in Fluid Mechanics, 2015, (6): 59-66. DOI: 10.11729/syltlx20140113
    [9]JIA Xiao-na, CHEN Xu, LI Wei-hua, ZUO Bing-guang. The application of synthetic schlieren technique in the experimental study of internal wave[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(4): 92-96. DOI: 10.3969/j.issn.1672-9897.2013.04.017
    [10]ZHU Zi-hua, HU Shi-jun, HU Da-peng, LIU Xue-wu. Experimental study and simulation of swirling jet gas wave refrigerator[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(3): 35-37,65. DOI: 10.3969/j.issn.1672-9897.2007.03.007
  • Cited by

    Periodical cited type(3)

    1. 王一平,徐司雨,姚二岗,李恒,张洋,于瑾,赵凤起. 先进光学诊断技术在含能材料燃烧测试中的应用进展. 火炸药学报. 2024(01): 1-16 .
    2. 吴凌昊,石小江,李杨,雷庆春,范玮. 超燃冲压发动机燃烧室光学测量技术发展现状. 计测技术. 2024(03): 57-71 .
    3. 袁勋,于欣,彭江波,曾徽,欧东斌. 电弧风洞NO平面激光诱导荧光可视化方法与试验验证. 航空学报. 2023(19): 73-82 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close