Citation: | ZHANG Mengzhuo, HU Haibao, DU Peng, HUANG Xiao. Research on gas replenishment for submersed superhydrophobic surface by electrolysis[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(1): 67-71. DOI: 10.11729/syltlx20190097 |
[1] |
OU J, PEROT J B, ROTHSTEIN J P. Laminar drag reduction in microchannels using ultrahydrophobic surfaces[J]. Physics of Fluids, 2004, 16(12): 4635-4643. http://cn.bing.com/academic/profile?id=95d919ba4f6481b9721adead9f8b933d&encoded=0&v=paper_preview&mkt=zh-cn
|
[2] |
OU J, ROTHSTEIN J P. Direct velocity measurements of the flow past drag-reducing ultrahydrophobic surfaces[J]. Physics of Fluids, 2005, 17(10): 1. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=55901dcb58913d04e3108181f817caad
|
[3] |
黄桥高, 潘光, 武昊, 等.超疏水表面减阻水洞实验及减阻机理研究[J].实验流体力学, 2011, 25(5): 21-25. http://journal16.magtechjournal.com/Jweb_jefm/CN/abstract/abstract10611.shtml
HUANG Q G, PAN G, WU H, et al. Investigation about drag reduction water tunnel experiment and mechanism of superhydrophobic surface[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(5): 21-25. http://journal16.magtechjournal.com/Jweb_jefm/CN/abstract/abstract10611.shtml
|
[4] |
刘铁峰, 王鑫蔚, 唐湛棋, 等.超疏水表面对湍流边界层相干结构影响的TRPIV实验研究[J].实验流体力学, 2019, 33(3): 90-96. http://journal16.magtechjournal.com/Jweb_jefm/CN/abstract/abstract11186.shtml
LIU T F, WANG X W, TANG Z Q, et al. TRPIV experi-mental study of the effect of superhydrophobic surface on the coherentstructure of turbulent boundary layer[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 90-96. http://journal16.magtechjournal.com/Jweb_jefm/CN/abstract/abstract11186.shtml
|
[5] |
ALJALLIS E, SARSHAR M A, DATLA R, et al. Experi-mental study of skin friction drag reduction on superhydropho- bic flat plates in high Reynolds number boundary layer flow[J]. Physics of Fluids, 2013, 25(2): 351-412. https://www.researchgate.net/publication/258077736_Experimental_study_of_skin_friction_drag_reduction_on_superhydrophobic_flat_plates_in_high_Reynolds_number_boundary_layer_flow
|
[6] |
KWON B H, KIM H H, JEON H J, et al. Experimental study on the reduction of skin frictional drag in pipe flow by using convex air bubbles[J]. Experiments in Fluids, 2014, 55(4): 1722. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=47ccb8769d28a13ec8bd65035cd437c5
|
[7] |
CHOI C H, KIM C J. Large slip of aqueous liquid flow over a nanoengineered superhydrophobic surface[J]. Physical Review Letters, 2006, 96(6): 066001. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_cond-mat%2f0609044
|
[8] |
MARTELL M B, PEROT J B, ROTHSTEIN J P. Direct numerical simulations of turbulent flows over superhydrophobic surfaces[J]. Journal of Fluid Mechanics, 2009, 620: 31-41. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e621dd914b5ce93fc5e27357a79b1120
|
[9] |
LEE C, CHOI C H, KIM C J. Superhydrophobic drag reduction in laminar flows: a critical review[J]. Experiments in Fluids, 2016, 57(12): 176. http://cn.bing.com/academic/profile?id=8da50f37aaafd5bb6f6d7ccb5d9d7151&encoded=0&v=paper_preview&mkt=zh-cn
|
[10] |
SAMAHA M A, TAFRESHI H V, GAD-EL-HAK M. Modeling drag reduction and meniscus stability of superhydrophobic surfaces comprised of random roughness[J]. Physics of Fluids, 2011, 23(1): 89. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=790c289f6cb86772a4497b2c686744f5
|
[11] |
PARK H, PARK H, KIM J. A numerical study of the effects of superhydrophobic surface on skin-friction drag in turbulent channel flow[J]. Physics of Fluids, 2013, 25(11): 66001. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=66247fc4bd698d898d35e81b1eb3facf
|
[12] |
EDWARD B. Comment onwater droplet motion control on superhydrophobic surfaces: Exploiting the Wenzel-to-Cassie transition[J]. Langmuir the ACS Journal of Surfaces & Colloids, 2011, 27(20): 12769-12770. http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM21894908
|
[13] |
VERHO T, KORHONEN J T, SAINIEMI L, et al. Reversible switching between superhydrophobic states on a hierarchically structured surface[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(26): 10210-10213. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3387048
|
[14] |
PENG D, WEN J, ZHANG Z, et al. Maintenance of air layer and drag reduction on superhydrophobic surface[J]. Ocean Engi-neering, 2017, 130: 328-335. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7f803359201d926ebefc6a9991cf400c
|
[15] |
LEE C, KIM C J. Underwater restoration and retention of gases on superhydrophobic surfaces for drag reduction[J]. Physical Review Letters, 2011, 106(1): 014502. http://cn.bing.com/academic/profile?id=217514fb70193fdd6749f6d498275278&encoded=0&v=paper_preview&mkt=zh-cn
|
[16] |
潘会波.海水电解用阳极[J].稀有金属材料与工程, 1997, 26(5): 7-12. http://d.old.wanfangdata.com.cn/Periodical/xyjsclygc200610024
PAN H B. Anodes for seawater electrolysis[J]. Rare Metal Materials and Engineering, 1997, 26(5): 7-12. http://d.old.wanfangdata.com.cn/Periodical/xyjsclygc200610024
|
[17] |
聂鑫, 龙潇.海水淡化浓海水用于电解制氯试验[J].中国电力, 2012, 45(6): 59-63. http://d.old.wanfangdata.com.cn/Periodical/zgdl201206014
NIE X, LONG X. Experimental research on seawater desali-nation concentrated seawater for producing chlorine by electrolysis[J]. Electric Power, 2012, 45(6): 59-63. http://d.old.wanfangdata.com.cn/Periodical/zgdl201206014
|
[18] |
孙春生, 张晓晖.电解水产生氢气泡尺度分布的测量[J].激光技术, 2013, 37(5): 622-626. http://d.old.wanfangdata.com.cn/Periodical/jgjs201305013
SUN C S, ZHANG X H. Measurement of size distribution of hydrogen-bubbles in water electrolysis[J]. Laser Technology, 2013, 37(5): 622-626. http://d.old.wanfangdata.com.cn/Periodical/jgjs201305013
|
[19] |
徐一丹, 庞明军, 费腾, 等.电解法产生微气泡的实验研究[J].实验室科学, 2015, 18(6): 17-21. http://d.old.wanfangdata.com.cn/Periodical/syskx201506006
XU Y D, PANG M J, FEI T, et al. Experimental study on microbubbles generated by electrolytic process[J]. Laboratory Science, 2015. http://d.old.wanfangdata.com.cn/Periodical/syskx201506006
|
[1] | ZHANG Hongjian, ZHANG Yanxin, XIONG Jianjun, ZHAO Zhao, RAN Lin, YI Xian. Numerical simulation and experimental research of Lamb wave propagation characteristics in ice[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(2): 68-77. DOI: 10.11729/syltlx20210170 |
[2] | DU Baihe, ZHANG Songhe, GE Qiang, WANG Maogang. Study on flow field characteristics of inert gas-air hybrid arc[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(5): 69-75. DOI: 10.11729/syltlx20210052 |
[3] | XIE Aimin, XING Yanchang, WANG Min, BU Shaoqing. 1.2 m large-field focusing schlieren technique[J]. Journal of Experiments in Fluid Mechanics. DOI: 10.11729/syltlx20220047 |
[4] | GUO Xiangdong, ZHANG Pingtao, ZHANG Ke, GUO Qiling, GUO Long. Improvement and evaluation of thermal flow-field quality in CARDC icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(4): 41-51. DOI: 10.11729/syltlx20200118 |
[5] | Xu Kejing, Chang Juntao, Li Nan, Bao Wen, Yu Daren. Recent research progress on motion characteristics and flow mechanism of shock train in an isolator with background waves[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 31-42. DOI: 10.11729/syltlx20180196 |
[6] | Xie Aimin, Bu Shaoqing, Luo Jinyang. Primary study of large-field focusing schlieren technique based on tiled light sources[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6): 68-73. DOI: 10.11729/syltlx20180012 |
[7] | Sha Xinguo, Wen Shuai, Yuan Minglun, Lu Hongbo, Ji Feng. Visualization of shock wave in hypersonic flow using electric discharge[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(3): 87-93. DOI: 10.11729/syltlx20170106 |
[8] | Chen Fei, Sun Bin. The study of dynamic differential pressure signal of gas-liquid two-phase flow based on adaptive Chirplet transformation[J]. Journal of Experiments in Fluid Mechanics, 2015, (6): 59-66. DOI: 10.11729/syltlx20140113 |
[9] | JIA Xiao-na, CHEN Xu, LI Wei-hua, ZUO Bing-guang. The application of synthetic schlieren technique in the experimental study of internal wave[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(4): 92-96. DOI: 10.3969/j.issn.1672-9897.2013.04.017 |
[10] | ZHU Zi-hua, HU Shi-jun, HU Da-peng, LIU Xue-wu. Experimental study and simulation of swirling jet gas wave refrigerator[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(3): 35-37,65. DOI: 10.3969/j.issn.1672-9897.2007.03.007 |