ZHANG Mengzhuo, HU Haibao, DU Peng, HUANG Xiao. Research on gas replenishment for submersed superhydrophobic surface by electrolysis[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(1): 67-71. DOI: 10.11729/syltlx20190097
Citation: ZHANG Mengzhuo, HU Haibao, DU Peng, HUANG Xiao. Research on gas replenishment for submersed superhydrophobic surface by electrolysis[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(1): 67-71. DOI: 10.11729/syltlx20190097

Research on gas replenishment for submersed superhydrophobic surface by electrolysis

More Information
  • Received Date: August 01, 2019
  • Revised Date: September 23, 2019
  • The variation of current with electrode pole distance and number during artificial seawater electrolysis is studied by using the graphite electrode device. The plastron state on the superhydrophobic surface replenished by the electrolysis device under different working voltages in the rectangular pipeline is observed, which proves the feasibility of this method. The results show that:There is a linear relationship between the voltage and the current are linear in the working process of the electrolyzer. Under a constant voltage, the current increases with the electrodes number and decreases with the pole distance. Study on the electrolysis efficiency shows that increasing the electrodes number is advantageous for increasing the current, but decreases the electrolysis efficiency. It is observed that the superhydrophobic surface plastron disappears under the scouring of turbulent flow. When the electrolyzer is operated at a low voltage, the gas production is not enough and the gas supply device works intermittently. The gas-liquid interface recovers partly on the superhydrophobic surface; When the voltage is increased, the gas production increases and a more obvious specular phenomenon can be observed, which proves the feasibility of the superhydrophobic electrolytic gas replenishment.
  • [1]
    OU J, PEROT J B, ROTHSTEIN J P. Laminar drag reduction in microchannels using ultrahydrophobic surfaces[J]. Physics of Fluids, 2004, 16(12): 4635-4643. http://cn.bing.com/academic/profile?id=95d919ba4f6481b9721adead9f8b933d&encoded=0&v=paper_preview&mkt=zh-cn
    [2]
    OU J, ROTHSTEIN J P. Direct velocity measurements of the flow past drag-reducing ultrahydrophobic surfaces[J]. Physics of Fluids, 2005, 17(10): 1. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=55901dcb58913d04e3108181f817caad
    [3]
    黄桥高, 潘光, 武昊, 等.超疏水表面减阻水洞实验及减阻机理研究[J].实验流体力学, 2011, 25(5): 21-25. http://journal16.magtechjournal.com/Jweb_jefm/CN/abstract/abstract10611.shtml

    HUANG Q G, PAN G, WU H, et al. Investigation about drag reduction water tunnel experiment and mechanism of superhydrophobic surface[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(5): 21-25. http://journal16.magtechjournal.com/Jweb_jefm/CN/abstract/abstract10611.shtml
    [4]
    刘铁峰, 王鑫蔚, 唐湛棋, 等.超疏水表面对湍流边界层相干结构影响的TRPIV实验研究[J].实验流体力学, 2019, 33(3): 90-96. http://journal16.magtechjournal.com/Jweb_jefm/CN/abstract/abstract11186.shtml

    LIU T F, WANG X W, TANG Z Q, et al. TRPIV experi-mental study of the effect of superhydrophobic surface on the coherentstructure of turbulent boundary layer[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 90-96. http://journal16.magtechjournal.com/Jweb_jefm/CN/abstract/abstract11186.shtml
    [5]
    ALJALLIS E, SARSHAR M A, DATLA R, et al. Experi-mental study of skin friction drag reduction on superhydropho- bic flat plates in high Reynolds number boundary layer flow[J]. Physics of Fluids, 2013, 25(2): 351-412. https://www.researchgate.net/publication/258077736_Experimental_study_of_skin_friction_drag_reduction_on_superhydrophobic_flat_plates_in_high_Reynolds_number_boundary_layer_flow
    [6]
    KWON B H, KIM H H, JEON H J, et al. Experimental study on the reduction of skin frictional drag in pipe flow by using convex air bubbles[J]. Experiments in Fluids, 2014, 55(4): 1722. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=47ccb8769d28a13ec8bd65035cd437c5
    [7]
    CHOI C H, KIM C J. Large slip of aqueous liquid flow over a nanoengineered superhydrophobic surface[J]. Physical Review Letters, 2006, 96(6): 066001. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_cond-mat%2f0609044
    [8]
    MARTELL M B, PEROT J B, ROTHSTEIN J P. Direct numerical simulations of turbulent flows over superhydrophobic surfaces[J]. Journal of Fluid Mechanics, 2009, 620: 31-41. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e621dd914b5ce93fc5e27357a79b1120
    [9]
    LEE C, CHOI C H, KIM C J. Superhydrophobic drag reduction in laminar flows: a critical review[J]. Experiments in Fluids, 2016, 57(12): 176. http://cn.bing.com/academic/profile?id=8da50f37aaafd5bb6f6d7ccb5d9d7151&encoded=0&v=paper_preview&mkt=zh-cn
    [10]
    SAMAHA M A, TAFRESHI H V, GAD-EL-HAK M. Modeling drag reduction and meniscus stability of superhydrophobic surfaces comprised of random roughness[J]. Physics of Fluids, 2011, 23(1): 89. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=790c289f6cb86772a4497b2c686744f5
    [11]
    PARK H, PARK H, KIM J. A numerical study of the effects of superhydrophobic surface on skin-friction drag in turbulent channel flow[J]. Physics of Fluids, 2013, 25(11): 66001. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=66247fc4bd698d898d35e81b1eb3facf
    [12]
    EDWARD B. Comment onwater droplet motion control on superhydrophobic surfaces: Exploiting the Wenzel-to-Cassie transition[J]. Langmuir the ACS Journal of Surfaces & Colloids, 2011, 27(20): 12769-12770. http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM21894908
    [13]
    VERHO T, KORHONEN J T, SAINIEMI L, et al. Reversible switching between superhydrophobic states on a hierarchically structured surface[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(26): 10210-10213. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3387048
    [14]
    PENG D, WEN J, ZHANG Z, et al. Maintenance of air layer and drag reduction on superhydrophobic surface[J]. Ocean Engi-neering, 2017, 130: 328-335. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7f803359201d926ebefc6a9991cf400c
    [15]
    LEE C, KIM C J. Underwater restoration and retention of gases on superhydrophobic surfaces for drag reduction[J]. Physical Review Letters, 2011, 106(1): 014502. http://cn.bing.com/academic/profile?id=217514fb70193fdd6749f6d498275278&encoded=0&v=paper_preview&mkt=zh-cn
    [16]
    潘会波.海水电解用阳极[J].稀有金属材料与工程, 1997, 26(5): 7-12. http://d.old.wanfangdata.com.cn/Periodical/xyjsclygc200610024

    PAN H B. Anodes for seawater electrolysis[J]. Rare Metal Materials and Engineering, 1997, 26(5): 7-12. http://d.old.wanfangdata.com.cn/Periodical/xyjsclygc200610024
    [17]
    聂鑫, 龙潇.海水淡化浓海水用于电解制氯试验[J].中国电力, 2012, 45(6): 59-63. http://d.old.wanfangdata.com.cn/Periodical/zgdl201206014

    NIE X, LONG X. Experimental research on seawater desali-nation concentrated seawater for producing chlorine by electrolysis[J]. Electric Power, 2012, 45(6): 59-63. http://d.old.wanfangdata.com.cn/Periodical/zgdl201206014
    [18]
    孙春生, 张晓晖.电解水产生氢气泡尺度分布的测量[J].激光技术, 2013, 37(5): 622-626. http://d.old.wanfangdata.com.cn/Periodical/jgjs201305013

    SUN C S, ZHANG X H. Measurement of size distribution of hydrogen-bubbles in water electrolysis[J]. Laser Technology, 2013, 37(5): 622-626. http://d.old.wanfangdata.com.cn/Periodical/jgjs201305013
    [19]
    徐一丹, 庞明军, 费腾, 等.电解法产生微气泡的实验研究[J].实验室科学, 2015, 18(6): 17-21. http://d.old.wanfangdata.com.cn/Periodical/syskx201506006

    XU Y D, PANG M J, FEI T, et al. Experimental study on microbubbles generated by electrolytic process[J]. Laboratory Science, 2015. http://d.old.wanfangdata.com.cn/Periodical/syskx201506006
  • Related Articles

    [1]ZHANG Hongjian, ZHANG Yanxin, XIONG Jianjun, ZHAO Zhao, RAN Lin, YI Xian. Numerical simulation and experimental research of Lamb wave propagation characteristics in ice[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(2): 68-77. DOI: 10.11729/syltlx20210170
    [2]DU Baihe, ZHANG Songhe, GE Qiang, WANG Maogang. Study on flow field characteristics of inert gas-air hybrid arc[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(5): 69-75. DOI: 10.11729/syltlx20210052
    [3]XIE Aimin, XING Yanchang, WANG Min, BU Shaoqing. 1.2 m large-field focusing schlieren technique[J]. Journal of Experiments in Fluid Mechanics. DOI: 10.11729/syltlx20220047
    [4]GUO Xiangdong, ZHANG Pingtao, ZHANG Ke, GUO Qiling, GUO Long. Improvement and evaluation of thermal flow-field quality in CARDC icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(4): 41-51. DOI: 10.11729/syltlx20200118
    [5]Xu Kejing, Chang Juntao, Li Nan, Bao Wen, Yu Daren. Recent research progress on motion characteristics and flow mechanism of shock train in an isolator with background waves[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 31-42. DOI: 10.11729/syltlx20180196
    [6]Xie Aimin, Bu Shaoqing, Luo Jinyang. Primary study of large-field focusing schlieren technique based on tiled light sources[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6): 68-73. DOI: 10.11729/syltlx20180012
    [7]Sha Xinguo, Wen Shuai, Yuan Minglun, Lu Hongbo, Ji Feng. Visualization of shock wave in hypersonic flow using electric discharge[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(3): 87-93. DOI: 10.11729/syltlx20170106
    [8]Chen Fei, Sun Bin. The study of dynamic differential pressure signal of gas-liquid two-phase flow based on adaptive Chirplet transformation[J]. Journal of Experiments in Fluid Mechanics, 2015, (6): 59-66. DOI: 10.11729/syltlx20140113
    [9]JIA Xiao-na, CHEN Xu, LI Wei-hua, ZUO Bing-guang. The application of synthetic schlieren technique in the experimental study of internal wave[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(4): 92-96. DOI: 10.3969/j.issn.1672-9897.2013.04.017
    [10]ZHU Zi-hua, HU Shi-jun, HU Da-peng, LIU Xue-wu. Experimental study and simulation of swirling jet gas wave refrigerator[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(3): 35-37,65. DOI: 10.3969/j.issn.1672-9897.2007.03.007
  • Cited by

    Periodical cited type(3)

    1. 王一平,徐司雨,姚二岗,李恒,张洋,于瑾,赵凤起. 先进光学诊断技术在含能材料燃烧测试中的应用进展. 火炸药学报. 2024(01): 1-16 .
    2. 吴凌昊,石小江,李杨,雷庆春,范玮. 超燃冲压发动机燃烧室光学测量技术发展现状. 计测技术. 2024(03): 57-71 .
    3. 袁勋,于欣,彭江波,曾徽,欧东斌. 电弧风洞NO平面激光诱导荧光可视化方法与试验验证. 航空学报. 2023(19): 73-82 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close