Zhang Ruoling, Le Jialing. The statistics of velocity and temperature fluctuations in axisymmetric laminar-to-turbulent transitions[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(2): 30-42. DOI: 10.11729/syltlx20180117
Citation: Zhang Ruoling, Le Jialing. The statistics of velocity and temperature fluctuations in axisymmetric laminar-to-turbulent transitions[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(2): 30-42. DOI: 10.11729/syltlx20180117

The statistics of velocity and temperature fluctuations in axisymmetric laminar-to-turbulent transitions

More Information
  • Received Date: August 23, 2018
  • Revised Date: September 17, 2018
  • The procedures for studying continuous phase transitions of thermodynamic equilibrium systems are extended to discuss the laminar-to-turbulent transitional flows in circular tubes. The flow in the transition range is treated as a composition of the laminar and turbulent flows assuming that the radial fluctuating velocity has the same value as that of the fully turbulent flow. The composite ratio of the turbulent flow is used as an order parameter to define the composite flow. The fluctuations of the composite ratios are introduced, and the criterion of minimum entropy production is used to derive an equation which can describe the transition behaviors. The convective heat transfer characteristics in the transition range in a heated circular tube are also discussed adopting the same procedures. Similar and separate processes for the transitions of the flow and convective heat transfer types are allowed in the heated circular tube. The macroscopic fluctuations in the transition range show both probabilistic and deterministic characteristics simultaneously. The agreements with measurements are given including those obtained in flow and heat transfer experiments.
  • [1]
    Mullin T. Experimental studies of transition to turbulence in a pipe[J]. Annual Review of Fluid Mechanics, 2011, 43:1-24. DOI: 10.1146/annurev-fluid-122109-160652
    [2]
    Durst F, Ünsal B. Forced laminar-to-turbulent transition of pipe flows[J]. J Fluid Mech, 2006, 560:449-464. DOI: 10.1017/S0022112006000528
    [3]
    Darbyshire A G, Mullin T. Transition to turbulence in constant-mass-flux pipe flow[J]. J Fluid Mech, 1995, 289:83-114. DOI: 10.1017/S0022112095001248
    [4]
    Eckhardt B, Schneider T M, Hof B, et al. Turbulence transition in pipe flow[J]. Annual Review of Fluid Mechanics, 2007, 39:447-468. DOI: 10.1146/annurev.fluid.39.050905.110308
    [5]
    Reichl L E. A modern course in statistical physics[M]. New Jersey:John Wiley & Sons Inc, 1998.
    [6]
    Landau L D, Lifshitz E M. Statistical physics:part 1[M]. 3rd ed. Oxford:Pergamon Press, 1980.
    [7]
    McComb W D. The physics of fluid turbulence[M]. Oxford:Claredon Press, 1992.
    [8]
    Nishi M, Ünsal B, Durst F, et al. Laminar-to-turbulent transition of pipe flows through puffs and slugs[J]. J Fluid Mech, 2008, 614:425-446. DOI: 10.1017/S0022112008003315
    [9]
    Henkel M, Hinrichsen H, Lübeck S. Non-equilibrium phase tran-sitions, Volume Ⅰ:Absorbing phase transitions[M]. Netherlands:Canopus Academic Publishing Limited, 2008.
    [10]
    Cowan B. Topics in statistical mechanics[M]. London:Imperial College Press, 2005.
    [11]
    Huang K. Statistical mechanics[M]. New Jersey:John Wiley & Sons Inc, 1987.
    [12]
    Landau L D, Lifshitz E M. Fluid mechanics[M]. 2nd ed. Oxford:Pergamon Press, 1987.
    [13]
    Eckert E R G, Drake R M Jr. Analysis of heat and mass transfer[M]. Tokyo:McGraw-Hill Kogakusha Ltd, 1972.
    [14]
    Koch H, Tataru D. Well-posedness for the Navier-Stokes equations[J]. Adv Math, 2001, 157(1):22-35. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1302.5785
    [15]
    Durmagambetov A A, Fazilova L S. Navier-Stokes equations-millennium prize problems[J]. Natural Science, 2015, 7(2):54262. http://d.old.wanfangdata.com.cn/NSTLHY/NSTL_HYCC0215037970/
    [16]
    Lifshitz E M, Pitaevskii L P. Statistical physics:part 2[M]. Oxford:Pergamon Press, 1980.
    [17]
    Glansdorff P, Prigogine I. Structure, stability, and fluctuations[M]. New Jersey:Wiley-Interscience, 1971.
    [18]
    Nicolis P, Prigogine I. Self-organization in nonequilibrium systems[M]. New Jersey:Wiley-Interscience, 1977.
    [19]
    Prigogine I. Time, structure, and fluctuations[J]. Science, 1978, 201:777-785. DOI: 10.1126/science.201.4358.777
    [20]
    Bergman T L, Lavine A S, Incropera F P, et al. Fundamentals of heat and mass transfer[M]. 7th ed. New Jersey:John Wiley & Sons Inc, 2011.
    [21]
    Rohsenow W M, Hartnett J P, Cho Y I. Handbook of heat transfer[M]. 3rd ed. New York:McGraw-Hill Book Company, 1998.
    [22]
    Zhang R L, Le J L. Natural laminar-to-turbulent transition inside an electrically heated circular tube[C]//Proc of AIP Conference Proceedings 1770: 030035. 2016.
    [23]
    张若凌, 乐嘉陵.电加热圆管内流动的自然转捩过程研究[J].实验流体力学, 2017, 31(2):51-60. http://www.syltlx.com/CN/abstract/abstract11011.shtml

    Zhang R L, Le J L. Natural laminar-to-turbulent transition inside an electrically heated circular tube[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(2):51-60. http://www.syltlx.com/CN/abstract/abstract11011.shtml
    [24]
    Nishi M. Laminar to turbulent transition in pipe flow through puffs and slugs[D]. Der Technischen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg, 2009.
    [25]
    Linne D L, Meyer M L, Edwards T, et al. Evaluation of heat transfer and thermal stability of supercritical JP-7 fuel[R]. AIAA-97-3041, 1997.
    [26]
    Huang H, Sobel D R, Spadaccini L J. Endothermic heat-sink of hydrocarbon fuels for scramjet cooling[R]. AIAA-2002-3871, 2002.
    [27]
    Zhang L, Zhang R L, Xiao S D, et al. Researches on heat transfer correlations of hydrocarbon fuel under supercritical pressure[J]. International Journal of Heat and Mass Transfer, 2013, 64:393-400. DOI: 10.1016/j.ijheatmasstransfer.2013.04.058
  • Related Articles

    [1]WANG Lu, CHEN Zhifei, CHEN Xi, ZHAO Qijun, BAO Ming. Singularity distribution entropy analysis of impulsive acoustic signals[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(1): 91-102. DOI: 10.11729/syltlx20230037
    [2]LI Han, HAO Liang, ZHANG Mengjie, LIU Taotao, KONG Decai. Experimental study on the flow pattern and pressure fluctuation characteristics of ventilated cavitating flows around a conical axisymmetric body at high Froude number[J]. Journal of Experiments in Fluid Mechanics. DOI: 10.11729/syltlx20230138
    [3]CHEN Jiufen, XU Yang, XU Xiaobin, ZOU Qiongfen, LING Gang, ZHANG Yifeng. Pressure fluctuation experiments of hypersonic boundary-layer on a 7-degree half-angle sharp cone[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(6): 51-60. DOI: 10.11729/syltlx20210054
    [4]WU Mengwei, XU Minyi, MI Jianchun. A review on the development of oscillating jets[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(4): 1-17. DOI: 10.11729/syltlx20230022
    [5]PAN Hui, LI Haiguang, WU Xuan. A study on chaotic characteristics and short-term prediction of pressure difference fluctuation signal of gas-liquid two-phase flow in small channel[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(4): 102-108. DOI: 10.11729/syltlx20190077
    [6]Yu Tao, Wang Junpeng, Liu Xianghong, Zhao Jiaquan, Wu Jie. Measurements and data processing technology of freestream fluctuations in hypersonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(5): 49-56. DOI: 10.11729/syltlx20180142
    [7]Zhang Ruoling, Le Jialing. Natural laminar-to-turbulent transition inside an electrically heated circular tube[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(2): 51-60. DOI: 10.11729/syltlx20150024
    [8]Wu Jinhua, Sun Haisheng, Shen Zhihong, Jiang Yubiao. 旋转流场下的振荡动导数试验技术研究[J]. Journal of Experiments in Fluid Mechanics, 2014, (4): 54-58. DOI: 10.11729/syltlx20130057
    [9]WANG Cheng-peng, ZHANG Kun-yuan. Shock train oscillation and wall pressure fluctuation in internal flow[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(5): 57-62. DOI: 10.3969/j.issn.1672-9897.2010.05.012
    [10]Investigation on the entropies and chaos characteristics of the instantaneous concentration field[J]. Journal of Experiments in Fluid Mechanics, 2004, 18(4): 93-98,104. DOI: 10.3969/j.issn.1672-9897.2004.04.020
  • Cited by

    Periodical cited type(2)

    1. 王亚龙,朱潇潇. 基于圆柱绕流分析k-ε和k-w湍流模型的差异. 机电产品开发与创新. 2022(02): 13-16 .
    2. 赵波,刘建,李开勇. 纵掠平板速度和温度边界层湍流转捩区的积分方法. 四川大学学报(自然科学版). 2021(03): 137-146 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (243) PDF downloads (8) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close