Volume 37 Issue 6
Dec.  2023
Turn off MathJax
Article Contents
CHEN J F, XU Y, XU X B, et al. Pressure fluctuation experiments of hypersonic boundary-layer on a 7-degree half-angle sharp cone[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(6): 51-60 doi: 10.11729/syltlx20210054
Citation: CHEN J F, XU Y, XU X B, et al. Pressure fluctuation experiments of hypersonic boundary-layer on a 7-degree half-angle sharp cone[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(6): 51-60 doi: 10.11729/syltlx20210054

Pressure fluctuation experiments of hypersonic boundary-layer on a 7-degree half-angle sharp cone

doi: 10.11729/syltlx20210054
  • Received Date: 2021-06-03
  • Accepted Date: 2021-10-21
  • Rev Recd Date: 2021-10-21
  • Available Online: 2022-11-15
  • Publish Date: 2023-12-30
  • In a conventional hypersonic wind-tunnel, pressure fluctuations of the boundary layer on a 7-degree half-angle sharp cone are measured by surface sensors and are analyzed by the linear stability theory. The influences of unit Reynolds numbers and Mach number on the stability and transition position of the boundary layer are studied. The length of the test model is 800 mm and the radius of the head is 0.05 mm. Test unit Reynolds numbers range from 0.49 × 10 7 m–1 to 2.45 × 107 m–1. Test Mach numbers range from 5 to 8. The angle of attack is 0°. The transition position and the energy spectrum distribution of the disturbance wave in the boundary layer are obtained by the quantitative infrared thermography and high frequency surface pressure fluctuation measurement techniques. The frequency and growth rate of the most unstable wave are analyzed by using the linear stability theory. The experimental results show that the fluctuating pressure signal with obvious characteristics of the unstable wave spectrum can be measured in the transition region. The frequency of the pressure fluctuation is close to that of the second mode instability analyzed by the linear stability theory, and the amplitude variation trend is also similar to that of the theoretical analysis. With the increase of the unit Reynolds number, the instability appears earlier, the dominant frequency is increased, and the transition onset moves forward. The unstable wave in the boundary layer contains the first and second modes. When the free-stream Mach number is equal to 5, the transition is caused by the first mode, and when the Mach number is above 6, the transition is attributed to the second mode.
  • loading
  • [1]
    罗纪生. 高超声速边界层的转捩及预测[J]. 航空学报, 2015, 36(1): 357–372.

    LUO J S. Transition and prediction for hypersonic boundary layers[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1): 357–372.
    [2]
    SMITH F T. On the first-mode instability in subsonic, supersonic or hypersonic boundary layers[J]. Journal of Fluid Mechanics, 1989, 198: 127–153. doi: 10.1017/s0022112089000078
    [3]
    MACK L M. Linear stability theory and the problem of supersonic boundary-layer transition[J]. AIAA Journal, 1975, 13(3): 278–289. doi: 10.2514/3.49693
    [4]
    MACK L M. Boundary-layer linear stability theory[R]. AGARD Report 709, 1984.
    [5]
    SARIC W S, Reed H L. Crossflow instabilities - theory & technology[R]. AIAA 2003-771, 2003. doi: 10.2514/6.2003-771
    [6]
    SARIC W S. Görtler vortices[J]. Annual Review of Fluid Mechanics, 1994, 26(1): 379–409. doi: 10.1146/annurev.fl.26.010194.002115
    [7]
    刘向宏, 赖光伟, 吴杰. 高超声速边界层转捩实验综述[J]. 空气动力学学报, 2018, 36(2): 196–212. doi: 10.7638/kqdlxxb-2018.0017

    LIU X H, LAI G W, WU J. Boundary-layer transition experiments in hypersonic flow[J]. Acta Aerodynamica Sinica, 2018, 36(2): 196–212. doi: 10.7638/kqdlxxb-2018.0017
    [8]
    SCHMISSEUR J D. Hypersonics into the 21st century: a perspective on AFOSR-sponsored research in aerothermo-dynamics[J]. Progress in Aerospace Sciences, 2015, 72: 3–16. doi: 10.1016/j.paerosci.2014.09.009
    [9]
    沈清, 袁湘江, 王强, 等. 可压缩边界层与混合层失稳结构的研究进展及其工程应用[J]. 力学进展, 2012, 42(3): 252–261.

    SHEN Q, YUAN X J, WANG Q, et al. Review on the instability structure in compressible boundary layers and mixing layers and its application[J]. Advances in Mecha-nics, 2012, 42(3): 252–261.
    [10]
    MUIR J, TRUJILLO A. Experimental investigation of the effects of nose bluntness, free-stream unit Reynolds number, and angle of attack on cone boundary layer transition at a Mach number of 6[C]//Proc of the 10th Aerospace Sciences Meeting. 1972. doi: 10.2514/6.1972-216
    [11]
    STETSON K F, RUSHTON G H. Shock tunnel investiga-tion of boundary-layer transition at M = 5.5[J]. AIAA Journal, 1967, 5(5): 899–906. doi: 10.2514/3.4098
    [12]
    JULIANO T J, KIMMEL R L, WILLEMS S, et al. HIFiRE-1 boundary-layer transition: ground test results and stability analysis[R]. AIAA 2015-1736, 2015. doi: 10.2514/6.2015-1736
    [13]
    WILLEMS S, GUELHAN A, JULIANO T J, et al. Laminar to turbulent transition on the HIFiRE-1 cone at Mach 7 and high angle of attack[R]. AIAA 2014-0428, 2014. doi: 10.2514/6.2014-0428
    [14]
    JULIANO T J, KIMMEL R L, WILLEMS S, et al. HIFiRE-1 surface pressure fluctuations from high Reynolds, high angle ground test[R]. AIAA 2014-0429, 2014. doi: 10.2514/6.2014-0429
    [15]
    STETSON K F, THOMPSON E R, DONALDSON J C, et al. Laminar boundary layer stability experiments on a cone at Mach 8, part 1: sharp cone[R]. AIAA-83-1761, 1983.
    [16]
    CASPER K M, BERESH S J, HENFLING J F, et al. Hypersonic wind-tunnel measurements of boundary-layer transition on a slender cone[J]. AIAA Journal, 2016, 54(4): 1250–1263. doi: 10.2514/1.j054033
    [17]
    ZHANG C H, LEE C. Rayleigh-scattering visualization of the development of second-mode waves[J]. Journal of Visualization, 2017, 20(1): 7–12. doi: 10.1007/s12650-016-0384-4
    [18]
    ZHU Y D, ZHANG C H, CHEN X, et al. Transition in hypersonic boundary layers: role of dilatational waves[J]. AIAA Journal, 2016, 54(10): 3039–3049. doi: 10.2514/1.j054702
    [19]
    常雨, 陈苏宇, 张扣立. 高超声速边界层转捩特性试验探究[J]. 宇航学报, 2015, 36(11): 1318–1323. doi: 10.3873/j.issn.1000-1328.2015.11.014

    CHANG Y, CHEN S Y, ZHANG K L. Experimental investigation of hypersonic boundary layer transition[J]. Journal of Astronautics, 2015, 36(11): 1318–1323. doi: 10.3873/j.issn.1000-1328.2015.11.014
    [20]
    LIU X L, YI S H, XU X W, et al. Experimental study of second-mode wave on a flared cone at Mach 6[J]. Physics of Fluids, 2019, 31(7): 074108. doi: 10.1063/1.5103192
    [21]
    陈久芬, 凌岗, 张庆虎, 等. 7°尖锥高超声速边界层转捩红外测量实验[J]. 实验流体力学, 2020, 34(1): 60–66. doi: 10.11729/syltlx20180172

    CHEN J F, LING G, ZHANG Q H, et al. Infrared thermography experiments of hypersonic boundary-layer transition on a 7° half-angle sharp cone[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(1): 60–66. doi: 10.11729/syltlx20180172
    [22]
    CHEN X, ZHU Y D, LEE C. Interactions between second mode and low-frequency waves in a hypersonic boundary layer[J]. Journal of Fluid Mechanics, 2017, 820: 693–735. doi: 10.1017/jfm.2017.233
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article Metrics

    Article views (288) PDF downloads(57) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return