CHEN J F, XU Y, XU X B, et al. Pressure fluctuation experiments of hypersonic boundary-layer on a 7-degree half-angle sharp cone[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(6): 51-60. DOI: 10.11729/syltlx20210054
Citation: CHEN J F, XU Y, XU X B, et al. Pressure fluctuation experiments of hypersonic boundary-layer on a 7-degree half-angle sharp cone[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(6): 51-60. DOI: 10.11729/syltlx20210054

Pressure fluctuation experiments of hypersonic boundary-layer on a 7-degree half-angle sharp cone

  • In a conventional hypersonic wind-tunnel, pressure fluctuations of the boundary layer on a 7-degree half-angle sharp cone are measured by surface sensors and are analyzed by the linear stability theory. The influences of unit Reynolds numbers and Mach number on the stability and transition position of the boundary layer are studied. The length of the test model is 800 mm and the radius of the head is 0.05 mm. Test unit Reynolds numbers range from 0.49 × 10 7 m–1 to 2.45 × 107 m–1. Test Mach numbers range from 5 to 8. The angle of attack is 0°. The transition position and the energy spectrum distribution of the disturbance wave in the boundary layer are obtained by the quantitative infrared thermography and high frequency surface pressure fluctuation measurement techniques. The frequency and growth rate of the most unstable wave are analyzed by using the linear stability theory. The experimental results show that the fluctuating pressure signal with obvious characteristics of the unstable wave spectrum can be measured in the transition region. The frequency of the pressure fluctuation is close to that of the second mode instability analyzed by the linear stability theory, and the amplitude variation trend is also similar to that of the theoretical analysis. With the increase of the unit Reynolds number, the instability appears earlier, the dominant frequency is increased, and the transition onset moves forward. The unstable wave in the boundary layer contains the first and second modes. When the free-stream Mach number is equal to 5, the transition is caused by the first mode, and when the Mach number is above 6, the transition is attributed to the second mode.
  • loading

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return