PAN Hui, LI Haiguang, WU Xuan. A study on chaotic characteristics and short-term prediction of pressure difference fluctuation signal of gas-liquid two-phase flow in small channel[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(4): 102-108. DOI: 10.11729/syltlx20190077
Citation: PAN Hui, LI Haiguang, WU Xuan. A study on chaotic characteristics and short-term prediction of pressure difference fluctuation signal of gas-liquid two-phase flow in small channel[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(4): 102-108. DOI: 10.11729/syltlx20190077

A study on chaotic characteristics and short-term prediction of pressure difference fluctuation signal of gas-liquid two-phase flow in small channel

More Information
  • Received Date: June 09, 2019
  • Revised Date: August 20, 2019
  • Experimental research on the pressure difference fluctuation signal was conducted in the channel of a horizontal circular pipe with a diameter of 3.0 mm, using air and water as the working medium. According to the pressure difference fluctuation signal diagram and the flow pattern diagram taken by the high-speed camera, the chaotic dynamic analysis of the pressure difference fluctuation signal was carried out by using the phase space reconstruction and Lyapunov index discrimination methods. Then the Volterra adaptive short-term prediction of the pressure difference fluctuation signal was carried out. The experimental results show that the attractor diagram obtained by the chaos analysis can show the flow characteristics more accurately. The Volterra adaptive prediction model has the relative errors of 1.86%, 0.71%, 3.90% and 2.49% for the prediction of the pressure difference time series of the annular flow, the layered flow, the intermittent flow and the slug flow respectively, which can effectively make short-term prediction of pressure difference time series of the gas-liquid two-phase flow in the pipeline.
  • [1]
    肖飞.圆形小通道内气液两相流动特性研究[D].吉林: 东北电力大学, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10188-1015579855.htm

    XIAO F. The study of gas-liquid two-phase flow characteristics in small circular channel[D]. Jilin: Northeast Electric Power University, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10188-1015579855.htm
    [2]
    石国庆.小通道套管换热器内流体流动与传热性能研究[D].南京: 东南大学, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10286-1016755329.htm

    SHI G Q. Study on fluid flow and heat transfer in a mini channel tube-in-tube heat exchanger[D]. Nanjing: Southeast University, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10286-1016755329.htm
    [3]
    龙军, 冀海峰, 王保良, 等.经验模态分解和小波分析在小通道气液两相流流型辨识中的应用[J].高校化学工程学报, 2011, 25(5):759-764. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxhxgcxb201105006

    LONG J, JI H F, WANG B L, et al. Application of empirical mode decomposition and wavelet analysis to small channel gas-liquid two-phase flow pattern identification[J]. Journal of Chemical Engineering of Chinese Universities, 2011, 25(5):759-764. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxhxgcxb201105006
    [4]
    崔建军.两相流流型识别的特征提取方法研究[D].青岛: 青岛科技大学, 2018. http://cdmd.cnki.com.cn/Article/CDMD-10426-1018832193.htm

    CUI J J. Study on feature extraction of two-phase flow paterrn recognition[D]. Qingdao: Qingdao University of Science & Technology, 2018. http://cdmd.cnki.com.cn/Article/CDMD-10426-1018832193.htm
    [5]
    郑小虎.基于多视觉的小管道气液两相流参数测量研究[D].杭州: 浙江大学, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10335-1016185624.htm

    ZHENG X H. Study on parameter measurement for small-pipe gas-liquid two-phase flow based on multi-vision technique[D]. Hangzhou: Zhejiang University, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10335-1016185624.htm
    [6]
    龙军.基于传感器数据融合的小通道气液两相流参数测量新方法研究[D].杭州: 浙江大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10335-1013185841.htm

    LONG J. Study on new measurement methods of gas-liquid two-phase flow in small channels based on sensor data fusion[D]. Hangzhou: Zhejiang University, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10335-1013185841.htm
    [7]
    田道贵, 孙立成, 高菲, 等.光学探针在气液两相流动局部参数测量中的应用研究[J].实验流体力学, 2012, 26(6):91-95. http://www.syltlx.com/CN/abstract/abstract10485.shtml

    TIAN D G, SUN L C, GAO F, et al. A study on application of optical probes for the measurement of local parameters in two-phase flow[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(6):91-95. http://www.syltlx.com/CN/abstract/abstract10485.shtml
    [8]
    贺贞贞, 冀海峰, 王保良, 等.基于电容法的小通道气液两相流参数检测系统[J].工程热物理学报, 2010, 31(10):1685-1688. http://www.cnki.com.cn/Article/CJFDTotal-GCRB201010018.htm

    HE Z Z, JI H F, WANG B L, et al. A capacitance-based detection system of gas-liquid two-phase flow in minichannels[J]. Journal of Engineering Thermophysics, 2010, 31(10):1685-1688. http://www.cnki.com.cn/Article/CJFDTotal-GCRB201010018.htm
    [9]
    孙斌, 刘彤, 赵鹏.基于EEMD气液两相流差压信号时频分析[J].实验流体力学, 2014, 28(5):47-52. http://www.syltlx.com/CN/abstract/abstract10772.shtml

    SUN B, LIU T, ZHAO P. Time-frequency analysis on differential pressure signal of two-phase flow based on EEMD[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(5):47-52. http://www.syltlx.com/CN/abstract/abstract10772.shtml
    [10]
    LI H W, LIU J P, LI T, et al. Analysis of dynamic of two-phase flow in small channel based on phase space reconstruction combined with data reduction sub-frequency band wavelet[J]. Chinese Journal of Chemical Engineering, 2015(6):1017-1026. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjce201506018
    [11]
    张玉梅, 胡小俊, 吴晓军, 等.语音信号序列的Volterra预测模型[J].物理学报, 2015, 64(20):121-133. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlxb201520012

    ZHANG Y M, HU X J, WU X J, et al. Volterra prediction model for speech signal series[J]. Acta Physica Sinica, 2015, 64(20):121-133. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlxb201520012
    [12]
    王兰, 李华强, 吴星, 等.基于改进局域Volterra自适应滤波器的风电功率混沌时间序列预测模型[J].电力自动化设备, 2016, 36(8):40-44. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlzdhsb201608006

    WANG L, LI H Q, WU X, et al. Wind power chaotic time series prediction model based on improved local Volterra adaptive filter[J]. Electric Power Automation Equipment, 2016, 36(8):40-44. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlzdhsb201608006
    [13]
    付晓霞.基于Lotka-Volterra模型的中国网民数量预测及其行为研究[D].合肥: 中国科学技术大学, 2018. http://cdmd.cnki.com.cn/Article/CDMD-10358-1018098719.htm

    FU X X. Research on the number prediction and behavior of chinese internet users with Lotka-Volterra model[D]. Hefei: University of Science and Technology of China, 2018. http://cdmd.cnki.com.cn/Article/CDMD-10358-1018098719.htm
    [14]
    何鲜峰, 汪自力, 何启, 等.基于相空间重构和Volterra的非线性寒区气温预测方法[J].中国科学:技术科学, 2019, 49(6):733-740. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-ce201906012

    HE X F, WANG Z L, HE Q, et al. The cold regions temperature nonlinear prediction method basing on phase space reconstruction and Volterra filter[J]. Scientia Sinica:Technologica, 2019, 49(6):733-740. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgkx-ce201906012
    [15]
    张家树, 肖先赐.混沌时间序列的Volterra自适应预测[J].物理学报, 2000, 49(3):403-408. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlxb200003004

    ZHANG J S, XIAO X C. Predicting low-dimensional chaotic time series using Volterra adaptive filers[J]. Acta Physica Sinica, 2000, 49(3):403-408. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlxb200003004
    [16]
    [17]
    LYU X Q, CAO B, ZENG M, et al. Study on chaos in short circuit gas metal arc welding process[J]. China Welding, 2007, 16(2):77-80. http://www.cnki.com.cn/Article/CJFDTotal-ZGHK200702016.htm
    [18]
    KENNEL M B, BROWN R, ABARBANEL H D I, Determining embedding dimension for phase-space reconstruction using a geometrical construction[J]. Physical Review A, 1992, 45(6):3403-3411. DOI: 10.1103/PhysRevA.45.3403
    [19]
    TAKENS F. Detecting strange attractors in turbulence[C]//RAND D, YOUNG L S. Dynamical systems and turbulence, Warwick 1980. Lecture notes in mathematics, vol 898. Berlin-New York: Springer, 1981: 366-381. https://www.researchgate.net/publication/245896484_Detecting_Strange_Attractors_in_Turbulence
    [20]
    王经.气液两相流动态特性的研究[M].上海:上海交通大学出版社, 2012. http://www.bookask.com/book/772695.html

    WANG J. Research on the dynamic behavior of gas-liquid two-phase flow[M]. Shanghai:Shanghai Jiao Tong University Press, 2012. http://www.bookask.com/book/772695.html
    [21]
    BROWN R, BRYANT P, ABARBANEL H D I. Computing the Lyapunov spectrum of a dynamical system from an observed time series[J]. Physical Review A, 1991, 43(6):2787-2806. DOI: 10.1103/PhysRevA.43.2787
    [22]
    吕金虎, 陆君安, 陈士华.混沌时间序列分析及其应用[M].武汉:武汉大学出版社, 2002. https://baike.baidu.com/item/%E6%B7%B7%E6%B2%8C%E6%97%B6%E9%97%B4%E5%BA%8F%E5%88%97%E5%88%86%E6%9E%90%E5%8F%8A%E5%85%B6%E5%BA%94%E7%94%A8/519718?fr=aladdin
    [23]
    张青贵.从观察数据确定李雅普诺夫指数谱算法的一种改进[J].系统工程与电子技术, 1998(9):66-70. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800647575

    ZHANG Q G. Improvement on determining Lyapunov spectrum from observated data[J]. Systems Engineering and Electronics, 1998(9):66-70. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800647575
    [24]
    韩敏.混沌时间序列预测理论与方法[M].北京:中国水利水电出版社, 2007. https://wenku.baidu.com/view/6a1dd282763231126fdb1158.html

    HAN M. Prediction theory and method of chaotic time series[M]. Beijing:China Water & Power Press, 2007. https://wenku.baidu.com/view/6a1dd282763231126fdb1158.html
    [25]
    茅于海, 苗家林.自适应预测滤波器的一种新算法[J].电子学报, 1983(5):75-81. http://www.cnki.com.cn/Article/CJFDTotal-DZXU198305012.htm

    MAO Y H, MIAO J L. A new algorithm for adaptive predictive filter[J]. Acta Electronica Sinica, 1983(5):75-81. http://www.cnki.com.cn/Article/CJFDTotal-DZXU198305012.htm
    [26]
    何岱海, 徐健学, 陈永红.非线性动力学相空间重构中小波变换方法研究[J].振动工程学报, 1999, 12(1):29-32. http://www.cqvip.com/Main/Detail.aspx?id=3416977

    HE D H, XU J X, CHEN Y H, Study on wavelet transform in nonlinear dynamics phasespace reconstruction[J]. Journal of Vibration Engineering, 1999, 12(1):29-32. http://www.cqvip.com/Main/Detail.aspx?id=3416977
    [27]
    游荣义, 陈忠, 徐慎初, 等.基于小波变换的混沌信号相空间重构研究[J].物理学报, 2004, 53(9):2882-2888. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlxb200409014

    YOU R Y, CHEN Z, XU S C, et al. Study on phase-space reconstruction of chaotic signal based on wavelet transform[J]. Acta Physica Sinica, 2004, 53(9):2882-2888. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlxb200409014
    [28]
    赵玉成, 肖忠会, 许庆余.混沌与噪声信号的谐波小波分析[J].机械强度, 2001, 23(1):69-71. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jxqd200101019

    ZHAO Y C, Xiao Z H, Xu Q Y. Harmonic wavelet analysis of chaos and noise signal[J]. Journal of Mechanical Strength, 2001, 23(1):69-71. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jxqd200101019
    [29]
    BUKKAPATNAM S T S, KUMARA S R T, LAKHTAKIA A, et al. The neighborhood method and its coupling with the wavelet method for signal separation of chaotic signals[J]. Signal Processing, 2002, 82(10):1351-1374. DOI: 10.1016/S0165-1684(02)00245-1
  • Related Articles

    [1]DONG Lin, WEN Guoan, LEI Ziwei, RINOSHIKA Akira. PIV experimental study on vortex structures induced by free autorotation fall of a samaras[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(5): 54-60. DOI: 10.11729/syltlx20200004
    [2]FU Hao, HE Chuangxin, LIU Yingzheng. PIV experimental study on flow characteristics of a low swirl number precessing jet[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(3): 39-45. DOI: 10.11729/syltlx20200129
    [3]WANG Fujun, WANG Hongping, GAO Qi, WEI Runjie, LIU Yanpeng. PIV experimental study on fish swimming vortex structure[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(5): 20-28. DOI: 10.11729/syltlx20200039
    [4]SHEN Feng, YAN Chengjin, LI Mengqi, JI Deru, LIU Zhaomiao. Micro-PIV study on flow field characteristics of droplets in a microcavity[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(2): 67-72. DOI: 10.11729/syltlx20190117
    [5]Zhang Jun, Bai Yaqiang, Zhai Shucheng, Zhang Guoping, Xu Lianghao. PIV measurement on streamwise vortex generated by undulating fins[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(6): 15-21. DOI: 10.11729/syltlx20170017
    [6]Liu Ping'an, Lin Yongfeng, Chen Yaofeng, Yuan Mingchuan. Blade tip vortex measurements of a hovering rotor[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(4): 39-44. DOI: 10.11729/syltlx20160186
    [7]Wu Jinhua, Sun Haisheng, Shen Zhihong, Jiang Yubiao. 旋转流场下的振荡动导数试验技术研究[J]. Journal of Experiments in Fluid Mechanics, 2014, (4): 54-58. DOI: 10.11729/syltlx20130057
    [8]WU Wen-fei, XIE Jing-xing, GONG Zhi-jun, LI Bao-wei. PIV measurements of the turbulence integral length scale on cold combustion flow field in burner zone of tangential firing boiler[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(2): 38-41,50. DOI: 10.3969/j.issn.1672-9897.2012.02.008
    [9]LI Hao, LIN Ming, ZHANG Yu-shan, SHEN Ji-kui, CHEN Chun-de. Study on centeral-dump combustor by PIV[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(4): 45-49,59. DOI: 10.3969/j.issn.1672-9897.2011.04.009
    [10]ZHANG Xiao-di, JIANG Jia-li, JIA Yuan-sheng, MA Hong-zhi, XIAO Ya-ke. Measurements of cylinder's wake by PIV[J]. Journal of Experiments in Fluid Mechanics, 2005, 19(2): 74-78. DOI: 10.3969/j.issn.1672-9897.2005.02.015
  • Cited by

    Periodical cited type(1)

    1. 张怀宝,王靖宇,Bailey Sean C.C.,王光学,邓小刚. 低雷诺数壁面约束流动皮托管测速误差分析与校正. 国防科技大学学报. 2018(03): 37-41 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (303) PDF downloads (10) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close