Yu Tao, Wang Junpeng, Liu Xianghong, Zhao Jiaquan, Wu Jie. Measurements and data processing technology of freestream fluctuations in hypersonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(5): 49-56. DOI: 10.11729/syltlx20180142
Citation: Yu Tao, Wang Junpeng, Liu Xianghong, Zhao Jiaquan, Wu Jie. Measurements and data processing technology of freestream fluctuations in hypersonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(5): 49-56. DOI: 10.11729/syltlx20180142

Measurements and data processing technology of freestream fluctuations in hypersonic wind tunnel

More Information
  • Received Date: October 14, 2018
  • Revised Date: March 24, 2019
  • Freestream fluctuation has a direct impact on the experiments carried out in hypersonic wind tunnels, due to effects such as hypersonic laminar/turbulent boundary-layer instability and transition. In order to obtain a deep insight into the mechanism in the hypersonic boundary layer instability, it is significant to measure and quantify the freestream disturbance in the hypersonic wind tunnel. Upon this work, we propose a novel approach for the disturbance modes characterization such that the hypersonic freestream can be measured by the hot-wire anemometer and the Pitot probe simultaneously. All the amplitudes of the disturbance modes, such as the entropy, vorticity and sound wave modes, are derived based on the small disturbance assumption by using the transfer function for the Pitot probe, which is obtained from direct numerical simulation. This novel approach for disturbance decomposition in hypersonic freestream has been applied in the Mach 6 Ludwieg tube wind tunnel at Technical University of Braunschweig in Germany. The experimental results show that this Ludwieg tube tunnel is a typical noise wind tunnel, in which the acoustic mode is up to 69% of the total disturbance mode, and the vortex mode and entropy mode account for about 15% respectively. This disturbance mode decomposition method sheds light on the freestream disturbance measurement in the hypersonic wind tunnel and provides valuable data for hypersonic wind tunnel experiments.
  • [1]
    伍荣林, 王振羽.风洞设计原理[M].北京:北京航空学院出版社, 1985.

    Wu R L, Wang Z Y. Design principle of wind tunnel[M]. Beijing:Beijing Aviation Academy Press, 1985.
    [2]
    Fedorov A. Transition and stability of high-speed boundary layers[J]. Annual Review of Fluid Mechanics, 2011, 43(1):79-95. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7c2ca832ca33f26c09114620f4202345
    [3]
    Schneider S P. Effects of high-speed tunnel noise on laminar-turbulent transition[J]. Journal of Spacecraft and Rockets, 2001, 38(3):323-333. DOI: 10.2514/2.3705
    [4]
    Saric W S, Reed H L, Kerschen E J. Boundary-layer receptivity to freestream disturbances[J]. Annual Review of Fluid Mechanics, 2002, 34(1):291-319. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_1dde46788bca889843ee1299b85c6376
    [5]
    刘向宏, 赖光伟, 吴杰.高超声速边界层转捩实验综述[J].空气动力学学报, 2018, 36(2):196-212. DOI: 10.7638/kqdlxxb-2018.0017

    Liu X H, Lai G W, Wu J. Boundary-layer transition experi-ments in hypersonic flow[J]. Acta Aerodynamica Sinica, 2018, 36(2):196-212. DOI: 10.7638/kqdlxxb-2018.0017
    [6]
    Yao Y F, Krishnan L, Sandham N D, et al. The effect of Mach number on unstable disturbances in shock/boundary-layer interactions[J]. Physics of Fluids, 2007, 19(5):054104. DOI: 10.1063/1.2720831
    [7]
    Wieselsberger C. Der Luftwiderstand von Kugeln[J]. Zeitschrift für Flugtechnik und Motorluftschiffahrt, 1914, 5:140-145. http://cn.bing.com/academic/profile?id=3cb3844baa07361d329f52c1194a7667&encoded=0&v=paper_preview&mkt=zh-cn
    [8]
    Zhong X L, Wang X W. Direct numerical simulation on the receptivity, instability, and transition of hypersonic boundary layers[J]. Annual Review of Fluid Mechanics, 2012, 44(1):527-561. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e51c04f0fa97182358123d79cd7ba4ab
    [9]
    Beckwith I E, Miller C G III. Aerothermodynamics and tran-sition in high-speed wind tunnels at NASA Langley[J]. Annual Review of Fluid Mechanics, 1990, 22(1):419-439. http://cn.bing.com/academic/profile?id=62af6597dc01a0219b5b723228387644&encoded=0&v=paper_preview&mkt=zh-cn
    [10]
    Lei J, Zhong X L. Linear stability analysis of nose bluntness effects on hypersonic boundary layer transition[J]. Journal of Spacecraft and Rockets, 2012, 49(1):24-37. DOI: 10.2514/1.52616
    [11]
    Kovasznay L S G. The hot-wire anemometer in supersonic flow[J]. Journal of the Aeronautical Sciences, 1950, 17(9):565-572. DOI: 10.2514/8.1725
    [12]
    Kovasznay L S G. Turbulence in supersonic flow[J]. Journal of the Aeronautical Sciences, 1953, 20(10):657-674. DOI: 10.2514/8.2793
    [13]
    Morkovin M V. On transition experiments at moderate super-sonic speeds[J]. Journal of the Aeronautical Sciences, 1957, 24(7):480-486. DOI: 10.2514/8.3887
    [14]
    Morkovin M V. On supersonic wind tunnels with low free-stream disturbances[J]. Journal of Applied Mechanics, 1959, 26(3):319-323.
    [15]
    Laufer J. Aerodynamic noise in supersonic wind tunnels[J]. Journal of the Aerospace Sciences, 1961, 28(9):685-692. DOI: 10.2514/8.9150
    [16]
    Schneider S P. Development of hypersonic quiet tunnels[J]. Journal of Spacecraft and Rockets, 2008, 45(4):641-664. DOI: 10.2514/1.34489
    [17]
    Spina E F, McGinley C B. Constant-temperature anemometry in hypersonic flow:critical issues and sample results[J]. Experiments in Fluids, 1994, 17(6):365-374. DOI: 10.1007/BF01877036
    [18]
    Smits A J, Hayakawa K, Muck K C. Constant temperature hot-wire anemo-meter practice in supersonic flows[J]. Experiments in Fluids, 1984, 2(1):33-41. DOI: 10.1007/BF00266316
    [19]
    Wu J, Radespiel R. Investigation of instability waves in a Mach 3 laminar boundary layer[J]. AIAA Journal, 2015, 53(12):3712-3725. DOI: 10.2514/1.J054040
    [20]
    Weiss J, Knauss H, Wagner S, et al. Constant temperature hot-wire measurements in a short duration supersonic wind tunnel[J]. Aeronautical Journal, 2001, 105(1050):435-441. DOI: 10.1017/S0001924000012410
    [21]
    Vrebalovich T. Application of hot-wire techniques in unsteady compressible flows[C]//Proc of ASME (1962) Symposium on Measurement of Unsteady Flow. 1962.
    [22]
    Beckwith I E, Greel T R, Chen, F J, et al. Free stream noise and transition measurements in a Mach 3.5 pilot quiet tunnel[R]. AIAA-1983-42, 1983.
    [23]
    Saric W S, Reed H L, Kerschen E J. Boundary-layer receptivity to freestream disturbances[J]. Annual Review of Fluid Mechanics, 2002, 34(1):291-319. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_1dde46788bca889843ee1299b85c6376
    [24]
    Saric W S, Reed H L, White E B. Stability and transition of three-dimensional boundary layers[J]. Annual Review of Fluid Mechanics, 2003, 35(1):413-440. http://d.old.wanfangdata.com.cn/Periodical/yysxhlx-e201903009
    [25]
    Schneider S P. Hypersonic laminar-turbulent transition on circular cones and scramjet forebodies[J]. Progress in Aerospace Sciences 2004, 40(1-2):1-50. DOI: 10.1016/j.paerosci.2003.11.001
    [26]
    Logan P. Improved method of analyzing hot-wire measurements in supersonic turbulence[J]. AIAA Journal, 1989, 27(1):115-117. DOI: 10.2514/3.10104
    [27]
    Logan P. Modal analysis of hot-wire measurements in super-sonic turbulence[R]. AIAA-1988-423, 1988.
    [28]
    Masutti D, Spinosa E, Chazot O, et al. Disturbance level characterization of a hypersonic blowdown facility[J]. AIAA Journal, 2012, 50(12):2720-2730. DOI: 10.2514/1.J051502
    [29]
    Wu J, Zamre P, Radespiel R. Flow quality experiment in a tandem nozzle wind tunnel at Mach 3[J]. Experiments in Fluids, 2015, 56(1):20. DOI: 10.1007/s00348-014-1887-1
    [30]
    Wu J, Radespiel R. Damping insert materials for settling chambers of supersonic wind tunnels[J]. Experiments in Fluids, 2017, 58(3):19. DOI: 10.1007/s00348-017-2310-5
    [31]
    Schilden T, Schröder W, Ali S R C, et al. Analysis of acoustic and entropy disturbances in a hypersonic wind tunnel[J]. Physics of Fluids, 2016, 28(5):056104. DOI: 10.1063/1.4948435
    [32]
    Chaudhry R S, Candler G V. Computing measured spectra from hypersonic pitot probes with flow-parallel freestream distur-bances[J]. AIAA Journal, 2017, 55(12):1-12.
    [33]
    Stainback P C, Wagner R D. A comparison of disturbance levels measured in hypersonic tunnels using a hot-wire anemometer and a pitot pressure probe[R]. AIAA-1972-1003, 1972.
    [34]
    Zhang C H, Tang Q, Lee C B. Hypersonic boundary-layer transition on a flared cone[J]. Acta Mechanica Sinica, 2013, 29(1):48-54. http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb201802002
    [35]
    Wu J, Radespiel R. Experimental investigation of a newly designed supersonic wind tunnel[J]. Progress in Flight Physics, 2015(7):123-147.
    [36]
    Wu J. Boundary-layer instability experiments in a tandem nozzle supersonic wind tunnel[M]. Germany:ShakerVerlag GmbH, 2015.
    [37]
    Wu J, Liu X J, Radespiel R. RANS simulations of a tandem nozzle supersonic wind tunnel[J]. Aerospace Science and Technology, 2015, 49:215-224. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c71a696891579b3b4bf8927039b0cfab
    [38]
    Wu J, Radespiel R. Tandem nozzle supersonic wind tunnel design[J]. International Journal of Engineering Systems Modelling and Simulation, 2013, 5(1):8-18. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0229412597/
    [39]
    Wu J, Radespiel R. Damping insert materials for settling chambers of supersonic wind tunnels[J]. Experiments in Fluids, 2017, 58(3):19. DOI: 10.1007/s00348-017-2310-5
    [40]
    吴杰. Ludwieg管向超声速流域拓展的设计技术[J].空气动力学学报, 2018, 36(3):480-492. DOI: 10.7638/kqdlxxb-2017.0042

    Wu J. Extention of hypersonic Ludwieg tube to supersonic wind tunnel[J]. Acta Aerodynamica Sinica, 2018, 36(3):480-492. DOI: 10.7638/kqdlxxb-2017.0042
    [41]
    Stephan S, Wu J, Radespiel R. Propulsive jet influence on generic launcher base flow[J]. CEAS Space Journal, 2015, 7(4):453-473. DOI: 10.1007/s12567-015-0098-9
    [42]
    Laufer J, McClellan R. Measurements of heat transfer from fine wires in supersonic flows[J]. Journal of Fluid Mechanics, 1956, 1(3):276-289. DOI: 10.1017/S0022112056000160
    [43]
    Beckwith I E. Comments on settling chamber design for quiet, blowdown wind tunnels[R]. NASA-TM-81948, 1981.
    [44]
    Duan L, Choudhari M M, Chou A, et al. Characterization of freestream disturbances in conventional hypersonic wind tunnels[R]. AIAA-2018-0347, 2018.
    [45]
    Ali S R C, Wu J, Radespiel R, et al. High-frequency measure-ments of acoustic and entropy disturbances in a hypersonic wind tunnel[R]. AIAA-2014-2644, 2014.
  • Related Articles

    [1]ZHAO Yijia, XIAO Jiabing, LIU Jianhua, LI Xiaojian, ZHAO Ming. Mode characteristics of transition flow in the boundary layer of the revolved body under wire spoiler disturbances[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(2): 59-67. DOI: 10.11729/syltlx20230108
    [2]GAO Kang, KUAI Haoyu, HUANG Shichun, YU Liang, JIANG Weikang. Excitation and global calibration of duct modes with high orders and complex mixtures inside a cylindrical duct with flow[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(1): 37-45. DOI: 10.11729/syltlx20230057
    [3]TANG Jianping, HE Jun, WANG Xue, HUANG Xia, XU Binbin, JIN Ling. A concise method of determining critical flutter wind speeds for small damping modes[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(6): 101-105. DOI: 10.11729/syltlx20210071
    [4]HE Can, XIAO Baoguo, XING Jianwen, YI Miaorong. Flow and combustion characteristics of dual-mode scramjet under different flight conditions[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(4): 20-29. DOI: 10.11729/syltlx20220019
    [5]XIONG Youde, YU Tao, XUE Tao, WU Jie. Progress on focused laser differential interferometry in measuring supersonic/hypersonic flow field[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(2): 9-20. DOI: 10.11729/syltlx20210126
    [6]ZHU Bo, CHEN Jiming, WU Wei, PEI Haitao. Experimental investigation of turbulence intensity measurement in continuous transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics. DOI: 10.11729/syltlx20220034
    [7]WANG Hui, WU Dong, ZHU Xinxin, ZHU Tao, YANG Kai, CHENG Guanghui. The study on transient heat flux measurement based on hybrid heat transfer modes[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(4): 92-97. DOI: 10.11729/syltlx20210030
    [8]LIAN Huan, GU Hongbin, ZHOU Ruixu, LI Tuo, LI Zhongpeng. Investigation of mode transition and thrust performance in transient acceleration and deceleration experiments[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(1): 97-108. DOI: 10.11729/syltlx20200069
    [9]Wang Feng, Xu Jinglei, Wang Yangsheng. Study of flow field characteristics of an over-under TBCC exhaust system during mode transition process[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 68-75. DOI: 10.11729/syltlx20190037
    [10]He Can, Xing Jianwen, Xiao Baoguo, Deng Weixin, Liu Weixiong. Investigation on flow field characteristics of a rectangular scramjet in different combustion modes[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(4): 12-19. DOI: 10.11729/syltlx20180022
  • Cited by

    Periodical cited type(3)

    1. 熊有德,李创创,张振辉,吴杰. 高超声速风洞自由来流扰动热线测量技术. 航空学报. 2024(10): 53-66 .
    2. 孙尧,王晓博,李健飞,曹乐凯. 程控信号源在风洞同步测量的应用. 应用科技. 2024(05): 122-127 .
    3. 杨兆欣,顾正华,张文清. 高速气流总温探针恢复特性评估技术研究. 仪器仪表学报. 2021(08): 122-129 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (323) PDF downloads (29) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close