Fu Cheng, Zhao Bo, Xu Dachuan, Liao Daxiong, Pei Haitao, Zhu Bo, Qin Honggang. Investigation on flow turbulent characteristics of plate-fin and tube-fin heat exchanger[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(6): 22-27. DOI: 10.11729/syltlx20190036
Citation: Fu Cheng, Zhao Bo, Xu Dachuan, Liao Daxiong, Pei Haitao, Zhu Bo, Qin Honggang. Investigation on flow turbulent characteristics of plate-fin and tube-fin heat exchanger[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(6): 22-27. DOI: 10.11729/syltlx20190036

Investigation on flow turbulent characteristics of plate-fin and tube-fin heat exchanger

More Information
  • Received Date: April 09, 2019
  • Revised Date: September 06, 2019
  • In the continuous wind tunnel, the heat exchanger is installed upstream the test section to balance the heat which is generated by the fan or the compressor to control the total temperature in the test section. The heat exchange efficiency and the total pressure loose ratio are two important performance parameters of the heat exchanger in the wind tunnel. On the other hand, the flow dynamic characteristics such as the turbulence intensity and the noise of the heat exchanger can influence the flow dynamic quality of the wind tunnel significantly. In the 0.55 m×0.40 m low noise aeronautics acoustic wind tunnel, the hot wire is used to measure the velocity and the turbulence intensity distribution downstream the tube-fin heat exchanger and the plate-fin heat exchanger, and the total pressure loose ratio is also gained. The CFD method is used to simulate the flow structure and the self-turbulent intensity of these two types of heat exchangers. The study results show that the flow straightening characteristics of the tube-fin heat exchanger and the plate-fin heat exchanger have significant differences. The turbulent intensity and velocity uniformity downstream the tube-fin heat exchanger are better than that downstream the plate-fin heat exchanger, while the plate-fin heat exchanger has better straightening performance on horizontal turbulence. The self-turbulent intensity of the plate-fin heat exchanger is lower than the tube-fin heat exchanger. The investigation has important engineering application value for design of large scale continuous wind tunnels which have advanced flow quality requirements.
  • [1]
    Kilgore W A, Balakrishna S, Bobbitt C W, et al. Recent enhancements to the national transonic facility[R]. AIAA-2003-754, 2003. https://www.researchgate.net/publication/23909678_Recent_Enhancements_to_the_National_Transonic_Facility
    [2]
    Jauch C E, Long D F, Hergert D W. Performance assessment of a new type of heat exchanger for wind tunnels[R]. AIAA-2002-0740, 2002. https://www.researchgate.net/publication/269078210_Performance_assessment_of_a_new_type_of_heat_exchanger_for_wind_tunnels
    [3]
    廖达雄, 陈吉明, 彭强, 等.连续式跨声速风洞设计关键技术[J].实验流体力学, 2011, 25(4): 74-78. DOI: 10.3969/j.issn.1672-9897.2011.04.014

    Liao D X, Chen J M, Peng Q, et al. Key design techniques of the low noise continuous transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(4): 74-78. DOI: 10.3969/j.issn.1672-9897.2011.04.014
    [4]
    赵波, 廖达雄, 陈吉明, 等.连续式跨超声速风洞热交换器设计技术初步研究[J].空气动力学学报, 2010, 28(6): 696-702. DOI: 10.3969/j.issn.0258-1825.2010.06.014

    Zhao B, Liao D X, Chen J M, et al. Investigation of heat exchanger design for continuous transonic and supersonic wind tunnel[J]. Acta Aerodynamica Sinica, 2010, 28(6): 696-702. DOI: 10.3969/j.issn.0258-1825.2010.06.014
    [5]
    楚攀, 何雅玲, 李瑞, 等.带纵向涡发生器的椭圆管翅片换热器数值分析[J].工程热物理学报, 2008, 29(3): 488-490. DOI: 10.3321/j.issn:0253-231X.2008.03.032

    Chu P, He Y L, Li R, et al. Three-dimensional numerical analysis of fin-and oval tube heat exchanger with longitudinal vortex generators[J]. Journal of Engineering Thermophysics, 2008, 29(3): 488-490. DOI: 10.3321/j.issn:0253-231X.2008.03.032
    [6]
    刘晓波, 廖达雄, 张巧芸.大型连续式跨声速风洞热交换器概述[J].实验流体力学, 2009, 23(1): 99-104.

    Liu X B, Liao D X, Zhang Q Y. A review of heat exchanger study for large scale continuous transonic wind tunnels[J]. Journal of Experiments in Fluid Mechanics, 2009, 23(1): 99-104.
    [7]
    魏进家, 刘海燕, 龙延.板翅式换热器流动和换热性能研究[J].工程热物理学报, 2012, 33(10): 1785-1788. http://d.old.wanfangdata.com.cn/Thesis/Y2365972

    Wei J L, Liu H Y, Long Y. Study of flow and heat transfer performance of plate-fin heat exchanger[J]. Journal of Engineering Thermophysics, 2012, 33(10): 1785-1788. http://d.old.wanfangdata.com.cn/Thesis/Y2365972
    [8]
    关欣, 罗行, 李美玲, 等.板翅式换热器的动态特性分解[J].工程热物理学报, 2003, 24(4): 688-690. DOI: 10.3321/j.issn:0253-231X.2003.04.044

    Guan X, Luo X, Li M L, et al. Analytical solution of dynamic behavior for plate-fin heat exchangers[J]. Journal of Engineering Thermophysics, 2003, 24(4): 688-690. DOI: 10.3321/j.issn:0253-231X.2003.04.044
    [9]
    李鹏, 汤更生, 余永生, 等.航空声学风洞的声学设计研究[J].实验流体力学, 2011, 25(3): 82-86. DOI: 10.3969/j.issn.1672-9897.2011.03.018

    Li P, Tang G S, Yu Y S, et al. Research of acoustic design for aeroacoustic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(3): 82-86. DOI: 10.3969/j.issn.1672-9897.2011.03.018
    [10]
    屈晓力, 余永生, 廖达雄, 等.声学引导风洞高效低噪声风扇设计[J].实验流体力学, 2013, 27(3): 103-106, 112. DOI: 10.3969/j.issn.1672-9897.2013.03.020

    Qu X L, Yu Y S, Liao D X, et al. The design of the high-performance low-noise fan of the acoustic pilot wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(3): 103-106, 112. DOI: 10.3969/j.issn.1672-9897.2013.03.020
    [11]
    Quix H, Quest J, Brzek C. Hot-wire measurements in cryogenic environment[R]. AIAA-2011-880, 2011. https://www.researchgate.net/publication/268565302_Hot-Wire_Measurements_in_Cryogenic_Environment
    [12]
    Cukurel B, Acarer S, Arts T. A novel perspective to high-speed cross-hot-wire calibration methodology[J]. Experiments in Fluids, 2012, 53: 1073-1085. DOI: 10.1007/s00348-012-1344-y
    [13]
    符澄, 彭强, 李毅, 等.开孔壁蜂窝器整流特性实验研究[J].实验流体力学, 2016, 30(5): 17-22. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ltlxsyycl201605003

    Fu C, Peng Q, Li Y, et al. Experimental study of flow straightening and turbulence reduction characteristics for porosity honeycomb[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(5): 17-22. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ltlxsyycl201605003
    [14]
    张仲寅, 乔志德.粘性流体力学[M].北京:北京航空学院出版社, 1989.

    Zhang Z Y, Qiao Z D. Mechanics of viscous fluids[M]. Beijing: Beijing Aeronautics College Press, 1989.
    [15]
    刘政崇.高低速风洞气动与结构设计[M].北京:国防工业出版社, 2003.

    Liu Z C. The aerodynamic and structure design of high speed and low speed wind tunnel[M]. Beijing: National Defense Industry Press, 2003.
    [16]
    伍荣林, 王振羽.风洞设计原理[M].北京:北京航空学院出版社, 1985.

    Wu R L, Wang Z Y. Wind tunnel design principle[M]. Beijing: Beijing Aeronautics College Press, 1989.
  • Related Articles

    [1]XIA Huihui, ZHANG Shunping, YANG Shunhua, KAN Ruifeng, XU Zhenyu, RUAN Jun, YAO Lu, HUANG An. Two-dimensional distribution measurement of direct-connect scramjet combustion flow field based on TDLAS multi-absorption lines[J]. Journal of Experiments in Fluid Mechanics, 2025, 39(1): 80-86. DOI: 10.11729/syltlx20220103
    [2]CHENG Xiaoqi, FAN Ziye, TANG Zhanqi, BAI Jianxia, JIANG Nan. Experimental investigation of the spatial distribution of uniform momentum zones in wall-bounded flow[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(4): 21-28. DOI: 10.11729/syltlx20230132
    [3]LI Long, PENG Lei, ZHAO Wei. Study of liquid spreading and particle size distribution during the preparation of aluminum alloy powder by rotary disc atomization[J]. Journal of Experiments in Fluid Mechanics. DOI: 10.11729/syltlx20230059
    [4]CHEN Shuyue, GUO Xiangdong, WANG Zixu, LIU senyun, WU Yingchun. Preliminary research on size measurement of supercooled large droplet in icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(3): 22-29. DOI: 10.11729/syltlx20200104
    [5]LI Fangji, ZHAO Qing, FAN Jianchao, JIA Shuang, RONG Xiangsen, GUO Min. Technology research and test verification of distributed flow regulator for inlet test in wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(4): 74-80. DOI: 10.11729/syltlx20190022
    [6]Ma Wenyong, Wang Guanya, Zheng Xi, Chen Tie, Li Zhi, Zhang Chengyuan, Fang Pingzhi. Effects of end condition on aerodynamic force distribution on a skewed circular cylinder[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(2): 43-50. DOI: 10.11729/syltlx20180050
    [7]Liu Lu, Cao Wei. Stability and transition prediction of the hypersonic plate boundary layers for wall temperature distribution[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6): 41-48. DOI: 10.11729/syltlx20180107
    [8]Wu Liyin, Zhang Kouli, Li Chenyang, Li Qinglian. Model for three-dimensional distribution of liquid fuel in supersonic crossflows[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(4): 20-30. DOI: 10.11729/syltlx20170172
    [9]Zhang Jing, Zheng Xu, Wang Leilei, Cui Haihang, Li Zhanhua. Experimental study on the characteristic motion of bubble propelled hollow Janus microspheres[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(2): 61-66. DOI: 10.11729/syltlx20160152
    [10]An Yali, Xu Zhipeng, Liu Tiejun, Xie Dailiang. Experimental study on flowrate measurement of air-water two phase flow by double-cone flowmeter[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(5): 67-73. DOI: 10.11729/syltlx20160044
  • Cited by

    Periodical cited type(6)

    1. 刘奇,刘常青,李增军. 超声速风洞模型冲击载荷抑制装置设计. 航空动力学报. 2023(02): 364-370 .
    2. 王珏,王誉超,季辰. 超声速风洞带舵机状态全尺寸舵颤振亚临界试验. 空天防御. 2023(02): 77-83 .
    3. Chuanwei XUAN,Jinglong HAN,Bing ZHANG,Haiwei YUN,Xiaomao CHEN. Hypersonic flutter and flutter suppression system of a wind tunnel model. Chinese Journal of Aeronautics. 2019(09): 2121-2132 .
    4. 周波,涂清,高川. 超声速风洞模型插入机构控制系统设计. 测控技术. 2019(12): 122-125+135 .
    5. 周波,高川,杨洋. 2m超声速风洞流场变速压控制方法研究. 实验流体力学. 2019(06): 72-77 . 本站查看
    6. 季辰,赵玲,朱剑,刘子强,李锋. 高超声速风洞连续变动压舵面颤振试验. 实验流体力学. 2017(06): 37-44 . 本站查看

    Other cited types(1)

Catalog

    Article Metrics

    Article views (308) PDF downloads (16) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close