Citation: | Gong Jishuang, Zhou Lin, Zhang Yining, Teng Honghui. Investigation on flow field structure of rotating detonation using the method of characteristics[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(1): 89-96. DOI: 10.11729/syltlx20180072 |
[1] |
Wolański P. Detonative propulsion[J]. Proceedings of the Combustion Institute, 2013, 34(1):125-158. http://d.old.wanfangdata.com.cn/Periodical/yhxb201801013
|
[2] |
Lu F K, Braun E M. Rotating detonation wave propulsion:experimental challenges, modeling, and engine concepts[J]. Journal of Propulsion and Power, 2014, 30(5):1125-1142. DOI: 10.2514/1.B34802
|
[3] |
Dabora E K, Nicholls J A, Morrison R B. The influence of a compressible boundary on the propagation of gaseous detonations[J]. Symposium (International) on Combustion, 1965, 10(1):817-830. DOI: 10.1016/S0082-0784(65)80225-9
|
[4] |
Sommers W P, Morrison R B. Simulation of condensed-explosive detonation phenomena with gases[J]. Physics of Fluids, 1962, 5:241-248. DOI: 10.1063/1.1706602
|
[5] |
Sichel M, Foster J C. The ground impulse generated by a plane fuel-air explosion with side relief[J]. Acta Astronautica, 1979, 6(3-4):243-256. DOI: 10.1016/0094-5765(79)90096-1
|
[6] |
林伟, 周进, 林志勇, 等.热射流起爆过程的数值模拟[J].国防科技大学学报, 2015, 37(1):70-77, 89. http://d.old.wanfangdata.com.cn/Periodical/gfkjdxxb201501012
Lin W, Zhou J, Lin Z Y, et al. Numerical simulation of detonation onset by hot jets[J]. Journal of National University of Defense Technology, 2015, 37(1):70-77, 89. http://d.old.wanfangdata.com.cn/Periodical/gfkjdxxb201501012
|
[7] |
姜孝海, 范宝春, 董刚, 等.旋转爆轰流场的数值模拟[J].推进技术, 2007, 28(4):403-407. DOI: 10.3321/j.issn:1001-4055.2007.04.014
Jiang X H, Fan B C, Dong G, et al. Numerical investigation on the flow field of rotating detonation wave[J]. Journal of Propulsion Technology, 2007, 28(4):403-407. DOI: 10.3321/j.issn:1001-4055.2007.04.014
|
[8] |
Schwer D, Kailasanath K. Fluid dynamics of rotating detonation engines with hydrogen and hydrocarbon fuels[J]. Proceedings of the Combustion Institute, 2013, 34(2):1991-1998. http://cn.bing.com/academic/profile?id=0d31c33ea917c211de2c68354bda5dfa&encoded=0&v=paper_preview&mkt=zh-cn
|
[9] |
Tsuboi N, Eto S, Hayashi A K, et al. Front cellular structure and thrust performance on hydrogen-oxygen rotating detonation engine[J]. Journal of Propulsion and Power, 2016, 33(1):100-111. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=41e97ed96a0bbbd245f1918971d0a03e
|
[10] |
Tsuboi N, Watanabe Y, Kojima T, et al. Numerical estimation of the thrust performance on a rotating detonation engine for a hydrogen-oxygen mixture[J]. Proceedings of the Combustion Institute, 2015, 35(2):2005-2013. DOI: 10.1016/j.proci.2014.09.010
|
[11] |
Hishida M, Fujiwara T, Wolanski P. Fundamentals of rotating detonations[J]. Shock Waves, 2009, 19(1):1-10. DOI: 10.1007/s00193-008-0178-2
|
[12] |
Zhou R, Wang J P. Numerical investigation of flow particle paths and thermodynamic performance of continuously rotating detonation engines[J]. Combustion and Flame, 2012, 159(12):3632-3645. DOI: 10.1016/j.combustflame.2012.07.007
|
[13] |
Mizener A R, Lu F K. Low-order parametric analysis of a rotating detonation engine in rocket mode[J]. Journal of Propulsion and Power, 2017, 33(6):1543-1554. DOI: 10.2514/1.B36432
|
[14] |
Kaemming T, Fotia M L, Hoke J, et al. Thermodynamic mo-deling of a rotating detonation engine through a reduced-order approach[J]. Journal of Propulsion and Power, 2017, 33(5):1170-1178. DOI: 10.2514/1.B36237
|
[15] |
Sousa J, Braun J, Paniagua G. Development of a fast evaluation tool for rotating detonation combustors[J]. Applied Mathematical Modelling, 2017(52):42-52. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ffa496b404616e8e1acd253ea5430c98
|
[16] |
Fievisohn R T, Yu K H. Steady-state analysis of rotating detonation engine flowfields with the method of characteristics[J]. Journal of Propulsion and Power, 2017, 33(1):89-99. DOI: 10.2514/1.B36103
|
[17] |
Fievisohn R, Yu K. Method of characteristic analysis of gaseous detonations bounded by an inert gas[C]//Proc of the 25th International Colloquium on the Dynamics of Explosions and Reactive Systems, Leeds, 2015.
|
[18] |
Zucrow M J, Hoffman J D. Gas dynamics. Volume 2-multidimensional flow[M]. New York:John Wiley and Sons, Inc., 1977:185-266.
|
[19] |
Thompson P A. Compressible-fluid dynamic[M]. New York:McGraw-Hill, 1971:454-455.
|
[20] |
Oneill J B, Powers S A. Determination of hypersonic flow fields by the method of characteristics[J]. AIAA Journal, 1963, 1(7):1693-1694. DOI: 10.2514/3.1897
|
[21] |
Goodwin D G, Moffat H K, Speth R L. Cantera: an object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes. Version 2.3.0[CP/OL].[2018-03-01] http://www.cantera.org.
|
[22] |
Westbrook C K, Pitz W J, Herbinet O, et al. A comprehensive detailed chemical kinetic reaction mechanism for combustion of n-alkane hydrocarbons from n-octane to n-hexadecane[J]. Combustion and flame, 2009, 156(1):181-199. DOI: 10.1016/j.combustflame.2008.07.014
|
[23] |
Schwer D, Kailasanath K. Numerical study of the effects of engine size on rotating detonation engines[R]. AIAA-2011-581, 2011.
|
[24] |
严传俊, 范玮.脉冲爆震发动机原理及关键技术[M].西安:西北工业大学出版社, 2005:37-38.
Yan C J, Fan W. Principles and crucial techniques of pulse detonation engine[M]. Xi'an:Northwestern Polytechnical University Press, 2005:37-38.
|