HU Shangyu, LI Qiusheng, ZHANG Ming. Active turbulence simulation study of wind loads on standard low-rise building[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(4): 22-29. DOI: 10.11729/syltlx20190157
Citation: HU Shangyu, LI Qiusheng, ZHANG Ming. Active turbulence simulation study of wind loads on standard low-rise building[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(4): 22-29. DOI: 10.11729/syltlx20190157

Active turbulence simulation study of wind loads on standard low-rise building

More Information
  • Received Date: November 27, 2019
  • Revised Date: January 13, 2020
  • This paper presents model scale tests for 1:50 geometrical scale laboratory modeling for the Texas Tech University (TTU) test building in a gust wind tunnel. This tunnel is able to add low frequency turbulence components for generation of large-scale turbulent flows by the conventional passive simulation technique or a technique combining active and passive turbulence generation devices. This paper mainly studies the effects of the turbulence integral length scale and turbulence intensity on wind-induced pressures on the flat roof of TTU full scale building. The results imply that the turbulence intensity has significant influence on the mean wind pressure coefficients at the leading edge of the flat roof under the separation bubble and in the corner zone for the conical vortex flow regime. Meanwhile, the turbulence intensity plays a predominant role in producing the fluctuation and peak pressure at the leading edge or in the corner area. On the other hand, the turbulence integral length scale has no noticeable influence on the mean wind pressure coefficients at the leading edge or in the corner zone. However, the turbulence integral scale length plays a slightly significant role in producing the fluctuation and peak pressure at the leading edge or in the corner zone.
  • [1]
    CERMAK J E. Progress in physical modeling for wind engineering[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1995, 54/55:439-455. DOI: 10.1016/0167-6105(94)00064-K
    [2]
    裴城, 马存明, 王明志, 等.紊流积分尺度对典型桥梁断面静力系数影响规律的风洞试验研究[J].土木工程学报, 2020, 53(1):64-72. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tmgcxb202001008

    PEI C, MA C M, WANG M Z, et al. Wind tunnel tests on the influence of turbulent integral scale on aerostatic coefficients of typical bridge section[J]. China Civil Engineering Journal, 2020, 53(1):64-72. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=tmgcxb202001008
    [3]
    陈凯, 毕卫涛, 魏庆鼎.振动尖塔对风洞模拟大气湍流边界层的作用[J].空气动力学学报, 2003, 21(2):211-217. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kqdlxxb200302012

    CHEN K, BI W T, WEI Q D. Vibrational spires method in wind tunnel simulation of atmospheric boundary layer[J]. Acta Aerodynamica Sinica, 2003, 21(2):211-217. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kqdlxxb200302012
    [4]
    NISHI A, KIKUGAWA H, MATSUDA Y, et al. Turbulence control in multiple-fan wind tunnels[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1997, 67/68:861-872. DOI: 10.1016/S0167-6105(97)00124-4
    [5]
    CAO S Y, NISHI A, KIKUGAWA H, et al. Reproduction of wind velocity history in a multiple fan wind tunnel[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2002, 90(12-15):1719-1729. DOI: 10.1016/S0167-6105(02)00282-9
    [6]
    潘韬, 赵林, 曹曙阳, 等.主动来流条件类平板断面气动力荷载效应分析[J].实验流体力学, 2010, 24(6):32-37, 56. http://www.syltlx.com/CN/abstract/abstract9904.shtml

    PAN T, ZHAO L, CAO S Y, et al. Analysis of aerodynamic load effects on thin plat section under active control flow condition[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(6):32-37, 56. http://www.syltlx.com/CN/abstract/abstract9904.shtml
    [7]
    陈彬, 姚裕, 易弢, 等.基于回流多风扇主动控制引导风洞的风场模拟试验[J].南京航空航天大学学报, 2019, 51(3):374-381. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=njhkht201903015

    CHEN B, YAO Y, YI T, et al. Wind field simulation in small-scale model of closed-circuit multiple controlled fan wind tunnel[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2019, 51(3):374-381. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=njhkht201903015
    [8]
    HAAN F L Jr, SARKAR P P, SPENCER-BERGER N J. Development of an active gust generation mechanism on a wind tunnel for wind engineering and industrial aerodynamics applications[J]. Wind and Structures, 2006, 9(5):369-386. DOI: 10.12989/was.2006.9.5.369
    [9]
    HUANG P, CHOWDHURY A G, BITSUAMLAK G, et al. Development of devices and methods for simulation of hurricanewinds in a full-scale testing facility[J]. Wind and Structures, 2009, 12(2):151-177.
    [10]
    ASGHARI MOONEGHI M, IRWIN P, CHOWDHURY A G. Partial turbulence simulation method for predicting peak wind loads on small structures and building appurtenances[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2016, 157:47-62. DOI: 10.1016/j.jweia.2016.08.003
    [11]
    BROWN T M, LIU Z Z, MORRISON M J. Comparison of field and full-scale laboratory pressure data at the IBHS research center[C]//Proceedings of the 13rd International Conference on Wind Engineering. 2011.
    [12]
    HANGAN H, REFAN M, JUBAYER C, et al. Novel techniques in wind engineering[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 171:12-33. DOI: 10.1016/j.jweia.2017.09.010
    [13]
    黄汉杰, 王卫华, 蒋科林.大比例TTU模型表面风压分布试验研究[J].建筑结构学报, 2016, 37(12):58-64, 73. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jzjgxb201612008

    HUANG H J, WANG W H, JIANG K L. Experimental research on surface wind pressure distribution on large scale TTU model[J]. Journal of Building Structures, 2016, 37(12):58-64, 73. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jzjgxb201612008
    [14]
    LEVITAN M L, MEHTA K C. Texas tech field experiments for wind loads part 1:building and pressure measuring system[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 43(1-3):1565-1576. DOI: 10.1016/0167-6105(92)90372-H
    [15]
    LEVITAN M L, MEHTA K C. Texas tech field experiments for wind loads part II:meteorological instrumentation and terrain parameters[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 43(1-3):1577-1588. DOI: 10.1016/0167-6105(92)90373-I
    [16]
    HAM H J, BIENKIEWICZ B. Wind tunnel simulation of TTU flow and building roof pressure[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1998, 77/78:119-133. DOI: 10.1016/S0167-6105(98)00137-8
    [17]
    SMITH D A, MORSE S M, MEHTA K C. WERFL data description user's manual: Wind Engineering Research Field Laboratory selected data sets for comparison to model-scale, full-scale and computational fluid dynamics simulations[EB/OL]. (2017)[2019-10-21]. http://www.depts.ttu.edu/nwi/Pubs/ReportsJournals/ReportsJournals/WERFL_Data_Description_2_08_17b.pdf.
  • Related Articles

    [1]ZHU Dongyu, FENG Qiang, Han Xiaotao, Yang Ximing, Cui Xiaochun, Yuan Li. Researches on a large natural moveable icing wind tunnel and test methods[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(1): 52-61. DOI: 10.11729/syltlx20210100
    [2]GUO Xiangdong, ZHANG Pingtao, ZHAO Xianli, YANG Shengke, LIN Wei. The compliance verification of thermodynamic flowfield in the large icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(5): 79-88. DOI: 10.11729/syltlx20190113
    [3]ZHU Xinxin, LONG Yongsheng, SHI Youan, YANG Qingtao, ZHOU Ping, ZHAO Shunhong. Optimal design of steady enthalpy probe and test verification[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(4): 87-93. DOI: 10.11729/syltlx20190062
    [4]Zhang Hui, Fan Litao. Correlation analysis of large low speed wind tunnel test on CHN-T1 calibration model[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 106-111. DOI: 10.11729/syltlx20180046
    [5]Gao Guochi, Li Baoliang, Ding Li, Wang Zixu, Ni Zhangsong. Icing wind tunnel test technology for pneumatic de-icing aircraft[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(2): 95-101. DOI: 10.11729/syltlx20180064
    [6]Wang Zixu, Shen Hao, Guo Long, Guo Xiangdong, Ni Zhangsong. Cloud calibration method of 3m×2m icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(2): 61-67. DOI: 10.11729/syltlx20170163
    [7]Zhou Feng, Feng Lijuan, Xu Chaojun, Zhao Keliang, Han Zhirong. Determination and verification of critical ice shape for the certification of civil aircraft[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(2): 8-13. DOI: 10.11729/syltlx20160019
    [8]Shen Chen, Yang Zhigang. Numerical methods exploration and experimental validation of Ahmed model with consideration of fluid-solid-interaction effect[J]. Journal of Experiments in Fluid Mechanics, 2014, (4): 37-42. DOI: 10.11729/syltlx20130017
    [9]YUAN Hong-gang, YANG Yong-dong, ZHANG Gui-chuan, HUANG Ming-qi. Improving techniques and validating of rotor and fuselage compound model test stand[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(4): 87-90. DOI: 10.3969/j.issn.1672-9897.2012.04.018
    [10]GUO Shan-guang, LIU Jun, JIN Liang, LUO Shi-bin. Numerical simulation and experiment validation on shock oscillations of inner flow path of hypersonic vehicle[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(1): 7-11. DOI: 10.3969/j.issn.1672-9897.2012.01.002
  • Cited by

    Periodical cited type(0)

    Other cited types(3)

Catalog

    Article Metrics

    Article views (224) PDF downloads (8) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close