YANG J W,YANG H,FU S F,et al. Wind tunnel experimental study of the grille-generated turbulence in the short test section[J]. Journal of Experiments in Fluid Mechanics, 2021,35(6):86-93.. DOI: 10.11729/syltlx20210042
Citation: YANG J W,YANG H,FU S F,et al. Wind tunnel experimental study of the grille-generated turbulence in the short test section[J]. Journal of Experiments in Fluid Mechanics, 2021,35(6):86-93.. DOI: 10.11729/syltlx20210042

Wind tunnel experimental study of the grille-generated turbulence in the short test section

More Information
  • Received Date: May 17, 2021
  • Revised Date: May 31, 2021
  • Available Online: December 09, 2021
  • The objective of the current work is to modulate the local high turbulent field behind grilles through a wind tunnel with a short axial distance. The flow fields formed by five types of grilles (two mesh grilles and three vertical bar grilles, 3 cm × 3 cm sectional aluminum profiles assembly) were experimentally tested by the hot-wire anemometer. The turbulent parameters distribution and isotropic characteristics of the turbulent flows near behind the grilles are obtained. Besides, the fitting formulas for turbulent flows are acquired according to the changing law of parameters, and the goodness of the fitting is 0.96. Meanwhile, the classic spectrum estimation and modern spectrum estimation are adopted to analyze the turbulent power spectrum density (PSD), respectively. It is noted that different spectral estimators can accurately predict the turbulent PSD at the near-field region, and the deviations exist only at low frequencies. Besides, by adjusting the distance between the grilles and the measuring point, the wind speed, and the grille structure, the energy structure behind the grille turbulent field can be changed.
  • [1]
    ALBER J,SOTO-VALLE R,MANOLESOS M,et al. Aerodynamic effects of gurney flaps on the rotor blades of a research wind turbine[J]. Wind Energy Science,2020,5(4):1645-1662. doi: 10.5194/wes-5-1645-2020
    [2]
    FU S F,ZHANG B E,ZHENG Y,et al. In-phase and out-of-phase pitch and roll oscillations of model wind turbines within uniform arrays[J]. Applied Energy,2020,269:114921. doi: 10.1016/j.apenergy.2020.114921
    [3]
    WANG Z Y,TIAN W,HU H. A Comparative study on the aerome-chanic performances of upwind and downwind horizontal-axis wind turbines[J]. Energy Conversion and Management,2018,163:100-110. doi: 10.1016/j.enconman.2018.02.038
    [4]
    SIMMONS L F G,SALTER C. Experimental investigation and analysis of the velocity variations in turbulent flow[J]. Proceedings of the Royal Society of London,1934,145(854):212-234.
    [5]
    MOHAMED M S,LARUE J C. The decay power law in grid-generated turbulence[J]. Journal of Fluid Mechanics,1990,219:195-214. doi: 10.1017/s0022112090002919
    [6]
    KITAMURA T,NAGATA K,SAKAI Y,et al. On invariants in grid turbulence at moderate Reynolds numbers[J]. Journal of Fluid Me-chanics,2014,738:378-406. doi: 10.1017/jfm.2013.595
    [7]
    LYSAK P D,CAPONE D E,JONSON M L. Measurement of the unsteady lift of thick airfoils in incompressible turbulent flow[J]. Journal of Fluids and Structures,2016,66:315-330. doi: 10.1016/j.jfluidstructs.2016.07.018
    [8]
    白桦,何晗欣,刘健新,等. 格栅紊流风特性参数模拟规律研究[J]. 振动与冲击,2016,35(22):209-214. DOI: 10.13465/j.cnki.jvs.2016.22.031

    BAI H,HE H X,LIU J X,et al. Wind characteristic parameters in grille turbulent flow[J]. Journal of Vibration and Shock,2016,35(22):209-214. doi: 10.13465/j.cnki.jvs.2016.22.031
    [9]
    严磊,朱乐东. 格栅湍流场风参数沿风洞轴向变化规律[J]. 实验流体力学,2015,29(1):49-54. DOI: 10.11729/syltlx20140075

    YAN L,ZHU L D. Wind characteristics of grid-generated wind field along the wind tunnel[J]. Journal of Experiments in Fluid Mecha-nics,2015,29(1):49-54. doi: 10.11729/syltlx20140075
    [10]
    袁星,黄维娜. 光滑通道内格栅湍流特性实验[J]. 航空动力学报,2019,34(1):27-33. DOI: 10.13224/j.cnki.jasp.2019.01.004

    YUAN X,HUANG W N. Experiment of grid-generated turbulent in a smooth channel[J]. Journal of Aerospace Power,2019,34(1):27-33. doi: 10.13224/j.cnki.jasp.2019.01.004
    [11]
    ISAZA J C,SALAZAR R,WARHAFT Z. On grid-generated turbulence in the near and far field regions[J]. Journal of Fluid Me-chanics,2014,753:402-426. doi: 10.1017/jfm.2014.375
    [12]
    VITA G,HEMIDA H,ANDRIANNE T,et al. Generating atmosphe-ric turbulence using passive grids in an expansion test section of a wind tunnel[J]. Journal of Wind Engineering and Industrial Aero-dynamics,2018,178:91-104. doi: 10.1016/j.jweia.2018.02.007
    [13]
    SHAO D D,HUANG L,WANG R Q,et al. Flow turbulence characteristics and mass transport in the near-wake region of an aquaculture cage net panel[J]. Water,2021,13(3):294. doi: 10.3390/w13030294
    [14]
    YASUDA T,GOTO S,VASSILICOS J C. Formation of power-law scalings of spectra and multiscale coherent structures in the near-field of grid-generated turbulence[J]. Physical Review Fluids,2020,5:014601. doi: 10.1103/physrevfluids.5.014601
    [15]
    张明月,李永贵,谭文俊,等. 格栅湍流风场风参数变化规律的风洞试验研究[J]. 实验力学,2019,34(3):427-433. DOI: 10.7520/1001-4888-17-214

    ZHANG M Y,LI Y G,TAN W J,et al. Wind tunnel experimental study of the variation of wind parameters in grid turbulent wind field[J]. Journal of Experimental Mechanics,2019,34(3):427-433. doi: 10.7520/1001-4888-17-214
  • Related Articles

    [1]ZHU Dongyu, FENG Qiang, Han Xiaotao, Yang Ximing, Cui Xiaochun, Yuan Li. Researches on a large natural moveable icing wind tunnel and test methods[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(1): 52-61. DOI: 10.11729/syltlx20210100
    [2]GUO Xiangdong, ZHANG Pingtao, ZHAO Xianli, YANG Shengke, LIN Wei. The compliance verification of thermodynamic flowfield in the large icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(5): 79-88. DOI: 10.11729/syltlx20190113
    [3]ZHU Xinxin, LONG Yongsheng, SHI Youan, YANG Qingtao, ZHOU Ping, ZHAO Shunhong. Optimal design of steady enthalpy probe and test verification[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(4): 87-93. DOI: 10.11729/syltlx20190062
    [4]Zhang Hui, Fan Litao. Correlation analysis of large low speed wind tunnel test on CHN-T1 calibration model[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 106-111. DOI: 10.11729/syltlx20180046
    [5]Gao Guochi, Li Baoliang, Ding Li, Wang Zixu, Ni Zhangsong. Icing wind tunnel test technology for pneumatic de-icing aircraft[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(2): 95-101. DOI: 10.11729/syltlx20180064
    [6]Wang Zixu, Shen Hao, Guo Long, Guo Xiangdong, Ni Zhangsong. Cloud calibration method of 3m×2m icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(2): 61-67. DOI: 10.11729/syltlx20170163
    [7]Zhou Feng, Feng Lijuan, Xu Chaojun, Zhao Keliang, Han Zhirong. Determination and verification of critical ice shape for the certification of civil aircraft[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(2): 8-13. DOI: 10.11729/syltlx20160019
    [8]Shen Chen, Yang Zhigang. Numerical methods exploration and experimental validation of Ahmed model with consideration of fluid-solid-interaction effect[J]. Journal of Experiments in Fluid Mechanics, 2014, (4): 37-42. DOI: 10.11729/syltlx20130017
    [9]YUAN Hong-gang, YANG Yong-dong, ZHANG Gui-chuan, HUANG Ming-qi. Improving techniques and validating of rotor and fuselage compound model test stand[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(4): 87-90. DOI: 10.3969/j.issn.1672-9897.2012.04.018
    [10]GUO Shan-guang, LIU Jun, JIN Liang, LUO Shi-bin. Numerical simulation and experiment validation on shock oscillations of inner flow path of hypersonic vehicle[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(1): 7-11. DOI: 10.3969/j.issn.1672-9897.2012.01.002
  • Cited by

    Periodical cited type(0)

    Other cited types(3)

Catalog

    Article Metrics

    Article views (699) PDF downloads (65) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close