ZHOU J K, QIU X, WANG B F, et al. The experimental investigation on the effects of the splitter plate on the evolution of turbulent structures in flow around a circular cylinder[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(4): 75-89. DOI: 10.11729/syltlx20230116
Citation: ZHOU J K, QIU X, WANG B F, et al. The experimental investigation on the effects of the splitter plate on the evolution of turbulent structures in flow around a circular cylinder[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(4): 75-89. DOI: 10.11729/syltlx20230116

The experimental investigation on the effects of the splitter plate on the evolution of turbulent structures in flow around a circular cylinder

More Information
  • Received Date: September 10, 2023
  • Revised Date: November 24, 2023
  • Accepted Date: November 29, 2023
  • Available Online: May 06, 2024
  • The flow characteristics of a circular cylinder with a splitter plate are investigated experimentally with Particle Image Velocimetry (PIV), and the effects of the splitter plate on the evolution of turbulent structures in the flow around the cylinder are examined. The Reynolds number is Re = 3.9 × 103, and the ratio of the splitter plate length L to the cylinder diameter D is L/D = 0~2.50. The results show that the length and the area of the recirculation region significantly increase as L/D increases from 0 to 1.00, and the effects of L/D on the characteristics of the recirculation flow behind the cylinder are small for L/D > 1.00. The evolution of turbulent structures is affected by the splitter plate. For L/D < 1.00 the shedding of the wake vortex is suppressed by the splitter plate, and the Strouhal number (Sr) is decreased. As L/D increases from 0 to 1.00, there is a 26.34% decrease of Sr. In addition, the cylinder wake vortex induces the formation of the secondary vortex with opposite direction of rotation in the trailing edge of the splitter plate, and the secondary vortex moves upstream along the plate. For 1.00 ≤ L/D < 2.00, the splitter plate interacts with the cylinder wake vortex, and the wake vortex breaks down into some small-scale wake vortices. For L/D ≥ 2.00, the wake vortex is reattached on the splitter plate, and the secondary vortex is mainly distributed behind the cylinder. As L/D increases, the splitter plate reduces the intensity of turbulence fluctuations behind the cylinder.

  • [1]
    高岳, 朱红钧, 胡洁, 等. 内外流耦合作用下柔性立管振动响应特性研究[J/OL]. 实验流体力学. doi: 10.11729/syltlx20220033.

    GAO Y, ZHU H J, HU J, et al. Experimental investigation on the flow-induced vibration of a riser subjected to the combination of internal liquid flow and external sheared flow[J/OL]. Journal of Experiments in Fluid Mechanics. doi: 10.11729/syltlx20220033.
    [2]
    DUAN F, WANG J J. Fluid–structure–sound interaction in noise reduction of a circular cylinder with flexible splitter plate[J]. Journal of Fluid Mechanics, 2021, 920: A6. doi: 10.1017/jfm.2021.403
    [3]
    CHEN W L, HUANG Y W, CHEN C L, et al. Review of active control of circular cylinder flow[J]. Ocean Engineer-ing, 2022, 258: 111840. doi: 10.1016/j.oceaneng.2022.111840
    [4]
    APELT C J, WEST G S, SZEWCZYK A A. The effects of wake splitter plates on the flow past a circular cylinder in the range 104 < R < 5 × 104[J]. Journal of Fluid Mechanics, 1973, 61(1): 187–198. doi: 10.1017/S0022112073000649
    [5]
    APELT C J, WEST G S. The effects of wake splitter plates on bluff-body flow in the range 104 < R < 5 × 104. Part 2[J]. Journal of Fluid Mechanics, 1975, 71: 145–160. doi: 10.1017/S0022112075002479
    [6]
    OCTAVIANTY R, ASAI M. Effects of short splitter plates on vortex shedding and sound generation in flow past two side-by-side square cylinders[J]. Experiments in Fluids, 2016, 57(9): 143. doi: 10.1007/s00348-016-2227-4
    [7]
    QU Y, WANG J J, FENG L H, et al. Effect of excitation frequency on flow characteristics around a square cylinder with a synthetic jet positioned at front surface[J]. Journal of Fluid Mechanics, 2019, 880: 764–798. doi: 10.1017/jfm.2019.703
    [8]
    CICOLIN M M, BUXTON O R H, ASSI G R S, et al. The role of separation on the forces acting on a circular cylinder with a control rod[J]. Journal of Fluid Mechanics, 2021, 915: A33. doi: 10.1017/jfm.2021.64
    [9]
    GAO D L, HUANG Y W, CHEN W L, et al. Control of circular cylinder flow via bilateral splitter plates[J]. Physics of Fluids, 2019, 31(5): 057105. doi: 10.1063/1.5097309
    [10]
    KWON K, CHOI H. Control of laminar vortex shedding behind a circular cylinder using splitter plates[J]. Physics of Fluids, 1996, 8(2): 479–486. doi: 10.1063/1.868801
    [11]
    AKILLI H, KARAKUS C, AKAR A, et al. Control of vortex shedding of circular cylinder in shallow water flow using an attached splitter plate[J]. Journal of Fluids Engineering, 2008, 130(4): 436–445. doi: 10.1115/1.2903813
    [12]
    周潇, 胡烨, 王晋军. 前置隔板对圆柱绕流影响的实验分析[J]. 北京航空航天大学学报, 2016, 42(1): 172–179. DOI: 10.13700/j.bh.1001-5965.2015.0053

    ZHOU X, HU Y, WANG J J. Experimental analysis on flow past circular cylinder attached to frontal splitter plate[J]. Journal of Beijing University of Aeronautics and Astronau-tics, 2016, 42(1): 172–179. doi: 10.13700/j.bh.1001-5965.2015.0053
    [13]
    CHAUHAN M K, DUTTA S, MORE B S, et al. Experimental investigation of flow over a square cylinder with an attached splitter plate at intermediate Reynolds number[J]. Journal of Fluids and Structures, 2018, 76: 319–335. doi: 10.1016/j.jfluidstructs.2017.10.012
    [14]
    陈雯煜, 梁盛平, 王嘉松. 圆柱固结刚性分离盘结构振动风洞实验研究[J]. 实验力学, 2020, 35(4): 567–576. DOI: 10.7520/1001-4888-19-072

    CHEN W Y, LIANG S P, WANG J S. Wind tunnel experiments of the vibration response for the circular cylinder fixed connection with rigid splitter plates[J]. Journal of Experimental Mechanics, 2020, 35(4): 567–576. doi: 10.7520/1001-4888-19-072
    [15]
    CUI G P, FENG L H, HU Y W. Flow-induced vibration control of a circular cylinder by using flexible and rigid splitter plates[J]. Ocean Engineering, 2022, 249: 110939. doi: 10.1016/j.oceaneng.2022.110939
    [16]
    SUN Y K, WANG J S, FAN D X, et al. The roles of rigid splitter plates in flow-induced vibration of a circular cylinder[J]. Physics of Fluids, 2022, 34: 114114. doi: 10.1063/5.0126867
    [17]
    TANG T, ZHU H J, WANG J S, et al. Flow-induced rotation modes and wake characteristics of a circular cylinder attached with a splitter plate at low Reynolds numbers[J]. Ocean Engineering, 2022, 266: 112823. doi: 10.1016/j.oceaneng.2022.112823
    [18]
    ROSHKO A. On the drag and shedding frequency of two-dimensional bluff bodies[J]. NACA Tech. Notes, 1954, 3196: 29.
    [19]
    GERRARD J H. The mechanics of the formation region of vortices behind bluff bodies[J]. Journal of Fluid Mechanics, 1966, 25(2): 401–413. doi: 10.1017/s0022112066001721
    [20]
    UNAL M F, ROCKWELL D. On vortex formation from a cylinder. Part 2. Control by splitter-plate interference[J]. Journal of Fluid Mechanics, 1988, 190: 513–529. doi: 10.1017/s0022112088001430
    [21]
    NAKAMURA Y. Vortex shedding from bluff bodies with splitter plates[J]. Journal of Fluids and Structures, 1996, 10(2): 147–158. doi: 10.1006/jfls.1996.0010
    [22]
    ANDERSON E A, SZEWCZYK A A. Effects of a splitter plate on the near wake of a circular cylinder in 2 and 3-dimensional flow configurations[J]. Experiments in Fluids, 1997, 23(2): 161–174. doi: 10.1007/s003480050098
    [23]
    MAT ALI M S, DOOLAN C J, WHEATLEY V. Low Reynolds number flow over a square cylinder with a splitter plate[J]. Physics of Fluids, 2011, 23(3): 033602. doi: 10.1063/1.3563619
    [24]
    SHARMA K R, DUTTA S. Flow control over a square cylinder using attached rigid and flexible splitter plate at intermediate flow regime[J]. Physics of Fluids, 2020, 32(1): 014104. doi: 10.1063/1.5127905
    [25]
    ZHOU X, WANG J J, HU Y. Experimental investigation on the flow around a circular cylinder with upstream splitter plate[J]. Journal of Visualization, 2019, 22(4): 683–695. doi: 10.1007/s12650-019-00560-x
    [26]
    QIU Y, SUN Y, WU Y, et al. Effects of splitter plates and Reynolds number on the aerodynamic loads acting on a circular cylinder[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 127: 40–50. doi: 10.1016/j.jweia.2014.02.003
    [27]
    LIU Y L, QI L M, ZHOU J K, et al. Experimental research on wake characteristics and vortex evolution of side-by-side circular cylinders placed near a wall[J]. Ocean Engineering, 2023, 285: 115268. doi: 10.1016/j.oceaneng.2023.115268
    [28]
    ESSEL E E, TACHIE M F, BALACHANDAR R. Time-resolved wake dynamics of finite wall-mounted circular cylinders submerged in a turbulent boundary layer[J]. Journal of Fluid Mechanics, 2021, 917: A8. doi: 10.1017/jfm.2021.265
    [29]
    LIU Y L, WANG Y Z, LI J H, et al. Experimental study on the large-scale turbulence structure dynamics of a counterflowing wall jet[J]. Experiments in Fluids, 2022, 63(10): 159. doi: 10.1007/s00348-022-03514-6
    [30]
    PARNAUDEAU P, CARLIER J, HEITZ D, et al. Experimental and numerical studies of the flow over a circular cylinder at Reynolds number 3900[J]. Physics of Fluids, 2008, 20(8): 085101. doi: 10.1063/1.2957018
    [31]
    YAN T, WANG R, BAO Y, et al. Modification of turbulent wake characteristics by two small control cylinders at a subcritical Reynolds number[J]. Physics of Fluids, 2018, 30(10): 105106. doi: 10.1063/1.5046447
    [32]
    NORBERG C. An experimental investigation of the flow around a circular cylinder: influence of aspect ratio[J]. Journal of Fluid Mechanics, 1994, 258: 287–316. doi: 10.1017/s0022112094003332
    [33]
    CIMBALA J M, GARG S. Flow in the wake of a freely rotatable cylinder with splitter plate[J]. AIAA Journal, 1991, 29(6): 1001–1003. doi: 10.2514/3.10692
    [34]
    SIROVICH L. Turbulence and the dynamics of coherent structures. I. Coherent structures[J]. Quarterly of Applied Mathematics, 1987, 45(3): 561–571. doi: 10.1090/qam/910462
    [35]
    VAN OUDHEUSDEN B W, SCARANO F, VAN HINSBERG N P, et al. Phase-resolved characterization of vortex shedding in the near wake of a square-section cylinder at incidence[J]. Experiments in Fluids, 2005, 39(1): 86–98. doi: 10.1007/s00348-005-0985-5
    [36]
    WU Y H. A study of energetic large-scale structures in turbulent boundary layer[J]. Physics of Fluids, 2014, 26(4): 045113. doi: 10.1063/1.4873199
    [37]
    QU Y, WANG J J, SUN M, et al. Wake vortex evolution of square cylinder with a slot synthetic jet positioned at the rear surface[J]. Journal of Fluid Mechanics, 2017, 812: 940–965. doi: 10.1017/jfm.2016.833
    [38]
    GAO D L, CHANG X, TURSUNTOHTI T, et al. Modification of subcritical cylinder flow with an upstream rod[J]. Physics of Fluids, 2022, 34(1): 015107. doi: 10.1063/5.0075167
    [39]
    ZHOU J, ADRIAN R J, BALACHANDAR S, et al. Mechanisms for generating coherent packets of hairpin vortices in channel flow[J]. Journal of Fluid Mechanics, 1999, 387(1): 353–396. doi: 10.1017/S002211209900467X
    [40]
    HE G S, WANG J J, PAN C, et al. Vortex dynamics for flow over a circular cylinder in proximity to a wall[J]. Journal of Fluid Mechanics, 2017, 812: 698–720. doi: 10.1017/jfm.2016.812
    [41]
    ZHOU J K, QIU X, LI J H, et al. The gap ratio effects on vortex evolution behind a circular cylinder placed near a wall[J]. Physics of Fluids, 2021, 33(3): 037112. doi: 10.1063/5.0039611
    [42]
    ZHOU J K, QIU X, LI J H, et al. Vortex evolution of flow past the near-wall circular cylinder immersed in a flat-plate turbulent boundary layer[J]. Ocean Engineering, 2022, 260: 112011. doi: 10.1016/j.oceaneng.2022.112011
  • Related Articles

    [1]LI Linkai, HUANG Zi, GU Yunsong, PENG Zhenjun, ZHANG Zongyuan, LEI Yu. Development of forebody asymmetric vortex control based on alternating synthetic jet and the verification on model free flight[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(4): 96-104. DOI: 10.11729/syltlx20230042
    [2]ZHANG Yi, PAN Chong, DOU Jianyu, ZHANG Miao. Flowfield and friction characteristics downstream of mirco vortex generator in turbulent boundary layer[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(4): 48-58. DOI: 10.11729/syltlx20230027
    [3]QU Xiaoli, LIU Qin, ZHU Bo, NIE Xutao, WANG Chao. Experimental research and analysis of gust generator for low speed wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(5): 99-105. DOI: 10.11729/syltlx20200114
    [4]WANG Jun, LAI Qingren, KANG Hongming, ZHANG Liu, LI Binbin, ZHAO Lei, JIN Yi. Experimental study on jet turning based on spiral flap[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(5): 47-53. DOI: 10.11729/syltlx20210036
    [5]GAO Limin, LIU Zhe, CAI Ming, LI Haoxue. Study on two-dimensional control technology of flow field in high-load compressor cascade test[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(2): 13-21. DOI: 10.11729/syltlx20200099
    [6]Li Renkang, Wang Rugen, He Cheng, Hu Jiaguo, Ma Caidong, Huang Danqing. Experimental investigation on the effects of vortex generator on corner separation in a high-load compressor cascade[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(6): 22-28, 36. DOI: 10.11729/syltlx20160195
    [7]Zhang Jin, Liu Jingyuan, Zhang Binqian. Experimental and CFD study on the mechanism of supercritical airfoil drag reduction with micro vortex generators[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(4): 37-41. DOI: 10.11729/syltlx20150157
    [8]Ouyang Shaoxiu, Liu Yi, Zhao Xiaoxia. The experimental research on a flow control device of horizontal tail[J]. Journal of Experiments in Fluid Mechanics, 2015, (1): 66-70. DOI: 10.11729/syltlx20130119
    [9]ZHANG Jin, ZHANG Bin-qian, YAN Wen-cheng, DUAN Zhuo-yi, CHEN Ying-chun, JIAO Yu-qin, YU Xin. Investigation of boundary layer separation control for supercritical airfoil using micro vortex generator[J]. Journal of Experiments in Fluid Mechanics, 2005, 19(3): 58-60,84. DOI: 10.3969/j.issn.1672-9897.2005.03.012
    [10]LI Bao-ming, Li Hong-zhi, YUAN Wei-qun. AExperimental studies of ablation-controlled arc discharges in plasma generator[J]. Journal of Experiments in Fluid Mechanics, 2000, 14(4): 14-19. DOI: 10.3969/j.issn.1672-9897.2000.04.003

Catalog

    Article Metrics

    Article views (486) PDF downloads (65) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日