Citation: | ZHANG S H, WU C H, LUO Y, et al. A brief review on the numerical studies of the fundamental problems for the shock associated noise of the supersonic jets[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(1): 1-27. DOI: 10.11729/syltlx20230075 |
[1] |
GOLDSTEIN M E. Aeroacoustics of turbulent shear flows[J]. Annual Review of Fluid Mechanics, 1984, 16: 263–285. doi: 10.1146/annurev.fl.16.010184.001403
|
[2] |
李晓东, 徐希海, 高军辉, 等. 喷流噪声研究进展与展望[J]. 空气动力学学报, 2018, 36(3): 398–409.
LI X D, XU X H, GAO J H, et al. Progress and prospect on jet noise study[J]. Acta Aerodynamica Sinica, 2018, 36(3): 398–409.
|
[3] |
TAM C K W. Supersonic jet noise[J]. Annual Review of Fluid Mechanics, 1995, 27: 17–43. doi: 10.1146/annurev.fl.27.010195.000313
|
[4] |
SEINER J. Advances in high speed jet aeroacoustics[C]//Proc of the 9th Aeroacoustics Conference. 1984. doi: 10.2514/6.1984-2275.
|
[5] |
POWELL A. On the mechanism of choked jet noise[J]. Proceedings of the Physical Society Section B, 1953, 66(12): 1039–1056. doi: 10.1088/0370-1301/66/12/306
|
[6] |
POWELL A. On the noise emanating from a two-dimensional jet above the critical pressure[J]. Aeronautical Quarterly, 1953, 4(2): 103–122. doi: 10.1017/s0001925900000822
|
[7] |
POWELL A. On edge tones and associated phenomena[J]. Acta Acust united with Acust, 1953, 3: 233–243.
|
[8] |
POWELL A. The reduction of choked jet noise[J]. Proceedings of the Physical Society Section B, 1954, 67(4): 313–327. doi: 10.1088/0370-1301/67/4/306
|
[9] |
POWELL A, UMEDA Y, ISHII R. Observations of the oscillation modes of choked circular jets[J]. The Journal of the Acoustical Society of America, 1992, 92(5): 2823–2836. doi: 10.1121/1.404398
|
[10] |
MERLE M. Sur les fréquencies des sondes émises par un jet d'air á grande vitesse[J]. C. R. Academy of Science Paris, 1956, 243: 490–493.
|
[11] |
DAVIES M G, OLDFIELD D E S. Tones from a choked axisymmetric jet. I. cell structure, eddy velocity and source locations[J]. Acustica, 1962, 12: 257–266.
|
[12] |
DAVIES M G, OLDFIELD D E S. Tones from a choked axisymmetric jet. II. The self excited loop and mode of oscillatiion[J]. Acustica, 1962, 12: 267–277.
|
[13] |
PONTON M K, SEINER J M. The effects of nozzle exit lip thickness on plume resonance[J]. Journal of Sound and Vibration, 1992, 154(3): 531–549. doi: 10.1016/0022-460X(92)90784-U
|
[14] |
CLEM M M, ZAMAN K, FAGAN A F. Variation of shock-spacing during screech stage-jumps[J]. International Journal of Aeroacoustics, 2016, 15(3): 324–335. doi: 10.1177/1475472x16630888
|
[15] |
TAM C K W, AHUJA K K, JONES R R III. Screech tones from free and ducted supersonic jets[J]. AIAA Journal, 1994, 32(5): 917–922. doi: 10.2514/3.12074
|
[16] |
RAMAN G. Supersonic jet screech: half-century from Powell to the present[J]. Journal of Sound and Vibration, 1999, 225(3): 543–571. doi: 10.1006/jsvi.1999.2181
|
[17] |
WESTLEY R, WOOLLEY J H. An investigation of the near noise fields of a choked axisymmetric air jet[J]. National Research Council, Aeronautical Report LR, 1968, 20-21: 147–167.
|
[18] |
WESTLEY R, WOOLLEY J H. The near field sound pressures of a choked jet during a screech cycle[R]. AGARD-CP-42, 1969.
|
[19] |
WESTLEY R, WOOLLEY J H. The near field sound pressures of a choked jet when oscillating in the spinning mode[C]//Proc of the 2nd Aeroacoustics Conference. 1975. doi: 10.2514/6.1975-479
|
[20] |
UMEDA Y, ISHII R. Sound sources of screech tone radiated from circular supersonic jet oscillating in the helical mode[J]. International Journal of Aeroacoustics, 2002, 1(4): 355–384. doi: 10.1260/147547202765275961
|
[21] |
HARPER-BOURNE M, FISHER M J. The noise from shock waves in supersonic jets[R]. AGARD-CP-131, 1973.
|
[22] |
TANNA H K. An experimental study of jet noise part I: turbulent mixing noise[J]. Journal of Sound and Vibration, 1977, 50(3): 405–428. doi: 10.1016/0022-460X(77)90493-X
|
[23] |
TANNA H K. An experimental study of jet noise part II: shock associated noise[J]. Journal of Sound and Vibration, 1977, 50(3): 429–444. doi: 10.1016/0022-460x(77)90494-1
|
[24] |
TAM C K W, TANNA H K. Shock associated noise of supersonic jets from convergent-divergent nozzles[J]. Journal of Sound and Vibration, 1982, 81(3): 337–358. doi: 10.1016/0022-460X(82)90244-9
|
[25] |
BRIDGES J, WERNET M. Turbulence associated with broadband shock noise in hot jets[C]//Proc of the 14th AIAA/CEAS Aeroacoustics Conference (29th AIAA Aeroacoustics Conference). 2008. doi: 10.2514/6.2008-2834
|
[26] |
VISWANATHAN K. Scaling laws and a method for identifying components of jet noise[J]. AIAA Journal, 2006, 44(10): 2274–2285. doi: 10.2514/1.18486
|
[27] |
VISWANATHAN K, ALKISLAR M B, CZECH M J. Characteristics of the shock noise component of jet noise[J]. AIAA Journal, 2010, 48(1): 25–46. doi: 10.2514/1.38521
|
[28] |
KUO C W, McLAUGHLIN D K, MORRIS P. Effects of supersonic jet conditions on broadband shock-associated noise[R]. AIAA-2011-1032, 2011.
|
[29] |
SHEN H, TAM C K W. Numerical simulation of the generation of axisymmetric mode jet screech tones[J]. AIAA Journal, 1998, 36: 1801–1807. doi: 10.2514/3.14051
|
[30] |
SHEN H, TAM C K W. Effects of jet temperature and nozzle-lip thickness on screech tones[J]. AIAA Journal, 2000, 38: 762–767. doi: 10.2514/3.14478
|
[31] |
SHEN H, TAM C K W. Three-dimensional numerical simula-tion of the jet screech phenomenon[J]. AIAA Journal, 2002, 40: 33–41. doi: 10.2514/3.14995
|
[32] |
LI X D, GAO J H. Numerical simulation of the generation mechanism of axisymmetric supersonic jet screech tones[J]. Physics of Fluids, 2005, 17(8): 085105. doi: 10.1063/1.2033909
|
[33] |
LI X D, GAO J H. Numerical simulation of the three-dimensional screech phenomenon from a circular jet[J]. Physics of Fluids, 2008, 20(3): 035101. doi: 10.1063/1.2844474
|
[34] |
KIM Y S, NAKAMURA Y. Effect of nozzle lip shape on screech tone in supersonic jet[R]. AIAA-2006-3706, 2006.
|
[35] |
BERLAND J, BOGEY C, BAILLY C. Numerical study of screech generation in a planar supersonic jet[J]. Physics of Fluids, 2007, 19(7): 075105. doi: 10.1063/1.2747225
|
[36] |
LOH C Y, HULTGREN L S, JORGENSON P C E. Near field screech noise computation for an underexpanded supersonic jet by the CE/SE method[R]. AIAA-2001-2252, 2001.
|
[37] |
JORGENSON P C E, LOH C Y. Computing axisymmetric jet screech tones using unstructured grids[R]. AIAA-2002-3889, 2002.
|
[38] |
LOH C Y, HIMANSU A, HULTGREN L S. A 3-D CE/SE navier-stokes solver with unstructured hexahedral grid for computation of nearfield jet screech noise[C]//Proc of the 9th AIAA/CEAS Aeroacoustics Conference and Exhibit. 2003. doi: 10.2514/6.2003-3207
|
[39] |
LOH C Y, HULTGREN L S. Near-field noise computation for a supersonic circular jet[R]. AIAA-2005-3042, 2005.
|
[40] |
LOH C Y, HULTGREN L S. Jet screech noise computa-tion[J]. AIAA Journal, 2006, 44(5): 992–998. doi: 10.2514/1.4591
|
[41] |
IMAMOGLU B, BAYSAL O, BALAKUMAR P. Computa-tion of shock induced noise in imperfectly expanded super-sonic jets[R]. AIAA-2002-2527, 2002.
|
[42] |
IMAMOGLU B, BALAKUMAR P. Three dimensional computation of shock induced noise in imperfectly expanded supersonic jets[C]//Proc of the 9th AIAA/CEAS Aeroacou-stics Conference and Exhibit. 2003. doi: 10.2514/6.2003-3249
|
[43] |
IMAMOGLU B, BAYSAL O, BALAKUMAR P. Computa-tion of shock induced noise in imperfectly expanded super-sonic jets[J]. International Journal of Aeroacoustics. 2007, 6(2): 127-146. doi: 10.1260/147547207781041877
|
[44] |
AL-QADI I M A, SCOTT J N. High-order three-dimensional numerical simulation of a supersonic rectangu-lar jet[R]. AIAA-2003-3238, 2003. doi: 10.2514/6.2003-3238
|
[45] |
LO S C. Numerical simulations of supersonic jet flows[D]. Indiana: Purdue University, 2010.
|
[46] |
GAO J H, LI X D. Large eddy simulation of supersonic jet noise from a circular nozzle[J]. International Journal of Aeroacoustics, 2011, 10(4): 465–474. doi: 10.1260/1475-472x.10.4.465
|
[47] |
BODONY D J, LELE S K. Current status of jet noise predictions using large-eddy simulation[J]. AIAA Journal, 2008, 46(2): 364–380. doi: 10.2514/1.24475
|
[48] |
LIU J H, KAILASANATH K, RAMAMURTI R, et al. Large-eddy simulations of a supersonic jet and its near-field acoustic properties[J]. AIAA Journal, 2009, 47(8): 1849–1865. doi: 10.2514/1.43281
|
[49] |
MUNDAY D, GUTMARK E, LIU J, et al. Flow structure and acoustics of supersonic jets from conical convergent-divergent nozzles[J]. Physics of Fluids, 2011, 23(11): 116102. doi: 10.1063/1.3657824
|
[50] |
DU Y L. Supersonic jet noise prediction and noise source investigation for realistic baseline and chevron nozzles based on hybrid RANS/LES simulations[D]. Common-wealth of Pennsylvania: The Pennsylvania State Univerisity, 2011.
|
[51] |
LIU J H, CORRIGAN A, KAILASANATH K, et al. Computational study of shock-associated noise characteris-tics using LES[R]. AIAA-2013-2199, 2013.
|
[52] |
MANNING T A, LELE S K. A numerical investigation of sound generation in supersonic jet screech[C]//Proc of the 6th Aeroacoustics Conference and Exhibit. 2000. doi: 10.2514/6.2000-2081
|
[53] |
SUZUKI T, LELE S K. Shock leakage through an unsteady vortex-laden mixing layer: application to jet screech[J]. Journal of Fluid Mechanics, 2003, 490: 139–167. doi: 10.1017/s0022112003005214
|
[54] |
LUI C C M. A numerical investigation of shock-associated noise[D]. State of California: Stanford University, 2003.
|
[55] |
李晓东, 江旻, 高军辉, 等. 计算气动声学进展与展望[J]. 中国科学: 物理学 力学 天文学, 2014, 44(3): 234–248.
LI X D, JIANG M, GAO J H, et al. Progress and prospective of computational aeroacoustics[J]. Scientia Sinica: Physica, Mechanica & Astronomica, 2014, 44(3): 234–248.
|
[56] |
COCKBURN B, SHU C W. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework[J]. Mathematics of Computation, 1989, 52(186): 411–435. doi: 10.1090/s0025-5718-1989-0983311-4
|
[57] |
LIU Y, VINOKUR M, WANG Z J. Spectral difference method for unstructured grids I: Basic formulation[J]. Journal of Computational Physics, 2006, 216(2): 780–801. doi: 10.1016/j.jcp.2006.01.024
|
[58] |
WANG Z J. Spectral (finite) volume method for conserva-tion laws on unstructured grids: basic formulation[J]. Journal of Computational Physics, 2002, 178(1): 210–251. doi: 10.1006/jcph.2002.7041
|
[59] |
JIANG G S, SHU C W. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics, 1996, 126(1): 202–228. doi: 10.1006/jcph.1996.0130
|
[60] |
DENG X G, ZHANG H X. Developing high-order weighted compact nonlinear schemes[J]. Journal of Computational Physics, 2000, 165(1): 22–44. doi: 10.1006/jcph.2000.6594
|
[61] |
ZHANG S H, JIANG S F, SHU C W. Development of nonlinear weighted compact schemes with increasingly higher order accuracy[J]. Journal of Computational Physics, 2008, 227(15): 7294–7321. doi: 10.1016/j.jcp.2008.04.012
|
[62] |
LIU X L, ZHANG S H, ZHANG H X, et al. A new class of central compact schemes with spectral-like resolution I: Linear schemes[J]. Journal of Computational Physics, 2013, 248: 235–256. doi: 10.1016/j.jcp.2013.04.014
|
[63] |
LIU X L, ZHANG S H, ZHANG H X, et al. A new class of central compact schemes with spectral-like resolution II: hybrid weighted nonlinear schemes[J]. Journal of Computa-tional Physics, 2015, 284: 133–154. doi: 10.1016/j.jcp.2014.12.027
|
[64] |
FU L, HU X Y, ADAMS N A. A family of high-order targeted ENO schemes for compressible-fluid simula-tions[J]. Journal of Computational Physics, 2016, 305: 333–359. doi: 10.1016/j.jcp.2015.10.037
|
[65] |
ZHANG S H, SHU C W. A new smoothness indicator for the WENO schemes and its effect on the convergence to steady state solutions[J]. Journal of Scientific Computing, 2007, 31(1): 273–305. doi: 10.1007/s10915-006-9111-y
|
[66] |
ZHANG S H, JIANG S F, SHU C W. Improvement of convergence to steady state solutions of Euler equations with the WENO schemes[J]. Journal of Scientific Comput-ing, 2011, 47(2): 216–238. doi: 10.1007/s10915-010-9435-5
|
[67] |
BALSARA D S, SHU C W. Monotonicity preserving weighted essentially non-oscillatory schemes with increasing-ly high order of accuracy[J]. Journal of Computational Physics, 2000, 160(2): 405–452. doi: 10.1006/jcph.2000.6443
|
[68] |
ZHANG S H, DENG X G, MAO M L, et al. Improvement of convergence to steady state solutions of Euler equations with weighted compact nonlinear schemes[J]. Acta Mathema-ticae Applicatae Sinica, English Series, 2013, 29(3): 449–464. doi: 10.1007/s10255-013-0230-6
|
[69] |
WU C H, WU L, LI H, et al. Very high order WENO schemes using efficient smoothness indicators[J]. Journal of Computational Physics, 2021, 432: 110158. doi: 10.1016/j.jcp.2021.110158
|
[70] |
WU C H, WU L, ZHANG S H. A smoothness indicator constant for sine functions[J]. Journal of Computational Physics, 2020, 419: 109661. doi: 10.1016/j.jcp.2020.109661
|
[71] |
武从海, 李虎, 刘旭亮, 等. 7阶WENO-S格式的计算效率研究[J]. 力学学报, 2023, 55(1): 239–253.
WU C H, LI H, LIU X L, et al. Investigation of the time efficiency of the seventh-order weno-s scheme[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(1): 239–253.
|
[72] |
张树海, 李虎, 王益民. 含激波、旋涡和声波的复杂多尺度流动数值模拟研究[J]. 空气动力学学报, 2018, 36(3): 449–462.
ZHANG S H, LI H, WANG Y M. Numerical study for complex multi-scale flow with shock, vortex and sound wave[J]. Acta Aerodynamica Sinica, 2018, 36(3): 449–462.
|
[73] |
COLONIUS T, LELE S K, MOIN P. Sound generation in a mixing layer[J]. Journal of Fluid Mechanics, 1997, 330: 375–409. doi: 10.1017/s0022112096003928
|
[74] |
CERRETELLI C, WILLIAMSON C H K. The physical mechanism for vortex merging[J]. Journal of Fluid Mechanics, 2003: 41-77.
|
[75] |
MITCHELL B E, LELE S K, MOIN P. Direct computation of the sound from a compressible co-rotating vortex pair[J]. Journal of Fluid Mechanics, 1995, 285: 181–202. doi: 10.1017/s0022112095000504
|
[76] |
ZHANG S H, LI H, LIU X L, et al. Classification and sound generation of two-dimensional interaction of two Taylor vortices[J]. Physics of Fluids, 2013, 25(5): 056103. doi: 10.1063/1.4807065
|
[77] |
PARMENTIER P, WINCKELMANS G, CHATELAIN P. A Vortex Particle-Mesh method for subsonic compressible flows[J]. Journal of Computational Physics, 2018, 354: 692–716. doi: 10.1016/j.jcp.2017.10.040
|
[78] |
ZHAO F X, JI X, SHYY W, et al. A compact high-order gas-kinetic scheme on unstructured mesh for acoustic and shock wave computations[J]. Journal of Computational Physics, 2022, 449: 110812. doi: 10.1016/j.jcp.2021.110812
|
[79] |
FU L, HU X Y, ADAMS N A. Improved five- and six-point targeted essentially nonoscillatory schemes with adaptive dissipation[J]. AIAA Journal, 2019, 57(3): 1143–1158. doi: 10.2514/1.j057370
|
[80] |
ELLZEY J L, HENNEKE M R, PICONE J M, et al. The interaction of a shock with a vortex: shock distortion and the production of acoustic waves[J]. Physics of Fluids, 1995, 7(1): 172–184. doi: 10.1063/1.868738
|
[81] |
ELLZEY J L, HENNEKE M R. The shock-vortex interac-tion: the origins of the acoustic wave[J]. Fluid Dynamics Research, 1997, 21(3): 171–184. doi: 10.1016/S0169-5983(97)00006-3
|
[82] |
ELLZEY J L, HENNEKE M R. The acoustic wave from a shock-vortex interaction: comparison between theory and computation[J]. Fluid Dynamics Research, 2000, 27(1): 53–64. doi: 10.1016/S0169-5983(99)00041-6
|
[83] |
INOUE O, HATTORI Y. Sound generation by shock-vortex interactions[J]. Journal of Fluid Mechanics, 1999, 380: 81–116. doi: 10.1017/s0022112098003565
|
[84] |
INOUE O. Propagation of sound generated by weak shock-vortex interaction[J]. Physics of Fluids, 2000, 12(5): 1258–1261. doi: 10.1063/1.870378
|
[85] |
INOUE O, TAKAHASHI T, HATAKEYAMA N. Separa-tion of reflected shock waves due to the secondary interac-tion with vortices: another mechanism of sound generation[J]. Physics of Fluids, 2002, 14(10): 3733–3744. doi: 10.1063/1.1507592
|
[86] |
ZHANG S H, ZHANG Y T, SHU C W. Multistage interaction of a shock wave and a strong vortex[J]. Physics of Fluids, 2005, 17(11): 116101. doi: 10.1063/1.2084233
|
[87] |
CHATTERJEE A, VIJAYARAJ S. Multiple sound genera-tion in interaction of shock wave with strong vortex[J]. AIAA Journal, 2008, 46(10): 2558–2567. doi: 10.2514/1.36050
|
[88] |
ZHANG S H, ZHANG Y T, SHU C W. Interaction of an oblique shock wave with a pair of parallel vortices: shock dynamics and mechanism of sound generation[J]. Physics of Fluids, 2006, 18(12): 126101. doi: 10.1063/1.2391806
|
[89] |
ZHANG S H, JIANG S F, ZHANG Y T, et al. The mechanism of sound generation in the interaction between a shock wave and two counter-rotating vortices[J]. Physics of Fluids, 2009, 21(7): 076101. doi: 10.1063/1.3176473
|
[90] |
刘旭亮, 张树海. 二维激波与剪切层相互作用的直接数值模拟研究[J]. 力学学报, 2013, 45(1): 61–75. DOI: 10.6052/0459-1879-12-106
LIU X L, ZHANG S H. Direct numerical simulation of the interaction of 2d shock wave and shear layer[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(1): 61–75. doi: 10.6052/0459-1879-12-106
|
[91] |
李虎. 轴对称超声速喷流激波噪声数值模拟研究[D]. 绵阳: 中国空气动力研究与发展中心. 2016.
|
[92] |
PANDA J. An experimental investigation of screech noise generation[J]. Journal of Fluid Mechanics, 1999, 378: 71–96. doi: 10.1017/s0022112098003383
|
[93] |
PONTON M K, SEINER J M, BROWN M C. Near field pressure fluctuations in the exit plane of a choked axisym-metric nozzle[R]. NASA Technical Memorandum 113137, 1997.
|
[94] |
李虎, 罗勇, 韩帅斌, 等. 基于模态分解的轴对称超声速射流啸声产生位置数值分析[J]. 力学学报, 2022, 54(4): 975–990.
LI H, LUO Y, HAN S B, et al. Numerical study on the generation position of screech tone in axisymmetric super-sonic jet based on modal decomposition[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 975–990.
|
[95] |
LI H, LUO Y, HAN S, et al. The source localization and dynamical evolution of axisymmetric screech modes in underexpanded supersonic jets[J]. Aerospace Science and Technology, 2023, 140: 108427. doi: 10.1016/j.ast.2023.108427
|
[96] |
HAN S B, LUO Y, LI H, et al. Data-driven and physical property-based hydro-acoustic mode decomposition[J]. Physics of Fluids, 2022, 34(2): 26102. doi: 10.1063/5.0079906
|
[97] |
GOJON R, BOGEY C, MIHAESCU M. Oscillation modes in screeching jets[J]. AIAA Journal, 2018, 56(7): 2918–2924. doi: 10.2514/1.j056936
|
[98] |
BOGEY C. Interactions between upstream-propagating guided jet waves and shear-layer instability waves near the nozzle of subsonic and nearly ideally expanded supersonic free jets with laminar boundary layers[J]. Journal of Fluid Mechanics, 2022, 949: A41. doi: 10.1017/jfm.2022.776
|
[99] |
EDGINGTON-MITCHELL D, JAUNET V, JORDAN P, et al. Upstream-travelling acoustic jet modes as a closure mechanism for screech[J]. Journal of Fluid Mechanics, 2018, 855: R1. doi: 10.1017/jfm.2018.642
|
[100] |
EDGINGTON-MITCHELL D, WANG T Y, NOGUEIRA P, et al. Waves in screeching jets[J]. Journal of Fluid Mechanics, 2021, 913: A7. doi: 10.1017/jfm.2020.1175
|
[101] |
EDGINGTON-MITCHELL D, LI X R, LIU N H, et al. A unifying theory of jet screech[J]. Journal of Fluid Mechanics, 2022, 945: A8. doi: 10.1017/jfm.2022.549
|
[102] |
UNNIKRISHNAN S, GAITONDE D V. Acoustic, hydrodyna-mic and thermal modes in a supersonic cold jet[J]. Journal of Fluid Mechanics, 2016, 800: 387–432. doi: 10.1017/jfm.2016.410
|
[103] |
罗勇. 复杂剪切流动数值模拟及噪声产生机理研究[D]. 绵阳: 中国空气动力研究与发展中心. 2023.
|
[104] |
SEINER J M, MANNING J C, PONTON M K. The preferred spatial mode of instability for a Mach 2 jet[C]//Proc of the 10th Aeroacoustics Conference. 1986. doi: 10.2514/6.1986-1942.
|
[105] |
EDGINGTON-MITCHELL D, WEIGHTMAN J, LOCK S, et al. The generation of screech tones by shock leakage[J]. Journal of Fluid Mechanics, 2021, 908: A46. doi: 10.1017/jfm.2020.945
|
[1] | SUN Shu, ZHANG Wenmin, JIA Shangshuai. Analysis on the aerodynamic noise of the pantograph of high-speed train at 400 km/h[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(3): 91-98. DOI: 10.11729/syltlx20230029 |
[2] | ZHANG Hongjian, ZHANG Yanxin, XIONG Jianjun, ZHAO Zhao, RAN Lin, YI Xian. Numerical simulation and experimental research of Lamb wave propagation characteristics in ice[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(2): 68-77. DOI: 10.11729/syltlx20210170 |
[3] | Yin Xiang, Wang Yiping, Du Mintao, Su Chuqi, Sun Hao. Influence of different sub-grid scale models on simulation accuracy of aerodynamic noise[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(6): 78-83. DOI: 10.11729/syltlx20190109 |
[4] | Fu Yang'aoxiao, Dong Weizhong, Ding Mingsong, Liu Qingzong, Gao Tiesuo, Jiang Tao. Numerical simulation of thermochemical non-equilibrium flow field in arc-jet tunnel[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 1-12. DOI: 10.11729/syltlx20180138 |
[5] | Liu Litao, Jin Ling, Zhu Minghong, Li Shiwei, Jiang Kelin. Numerical simulation of support interference and distortion effect on flying wing in low speed wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(5): 54-60. DOI: 10.11729/syltlx20180018 |
[6] | Lei Yao, Ji Yuxia, Wang Changwei. Numerical simulation and experimental study on aerodynamics of the micro coaxial rotors[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(5): 67-73. DOI: 10.11729/syltlx20160193 |
[7] | Shi Honghui, Chen Bo, Wang Yun. Experimental and numerical study of oblique water exit in free surface penetration by a blunt body's supercavity[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(5): 29-35. DOI: 10.11729/syltlx20150154 |
[8] | Long Yongsheng, Hu Zhenzhen, Yuan Jie, Li Haiyan. Design and numerical simulation of an elliptical nozzle[J]. Journal of Experiments in Fluid Mechanics, 2015, (3): 80-86. DOI: 10.11729/syltlx20150045 |
[9] | Zhang Xiaotian, Jia Guanghui. Numerical simulation of fragment generation from satellite breakup[J]. Journal of Experiments in Fluid Mechanics, 2014, (4): 78-83. DOI: 10.11729/syltlx2014pz32 |
[10] | Pen Qiang. Numerical Simulation of the Diffuser for the Transonic Wind Tunnel[J]. Journal of Experiments in Fluid Mechanics, 1999, 13(2): 89-95. DOI: 10.3969/j.issn.1672-9897.1999.02.014 |
重要公告
www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。
《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。
相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。
请广大读者、作者相互转告,广为宣传!
感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!
《实验流体力学》编辑部
2021年8月13日