Volume 38 Issue 1
Feb.  2024
Turn off MathJax
Article Contents
ZHANG S H, WU C H, LUO Y, et al. A brief review on the numerical studies of the fundamental problems for the shock associated noise of the supersonic jets[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(1): 1-27 doi: 10.11729/syltlx20230075
Citation: ZHANG S H, WU C H, LUO Y, et al. A brief review on the numerical studies of the fundamental problems for the shock associated noise of the supersonic jets[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(1): 1-27 doi: 10.11729/syltlx20230075

A brief review on the numerical studies of the fundamental problems for the shock associated noise of the supersonic jets

doi: 10.11729/syltlx20230075
  • Received Date: 2023-05-16
  • Accepted Date: 2023-09-08
  • Rev Recd Date: 2023-08-23
  • Available Online: 2024-01-26
  • Publish Date: 2024-02-01
  • The flow of the supersonic jets contains shock waves, vortices, turbulence and acoustic waves. The numerical simulation method and the mechanism of the shock associated noise of the supersonic jets have been topics of general interest. This paper contains two parts. Firstly, we briefly review the numerical studies on the fundamental problems of the shock associated noise of the supersonic jets. It includes the numerical methods for the shock associated noise, and the models of the supersonic jets, the axisymmetric and three dimensional supersonic jets. For the numerical method, we introduce the technique to reduce the non-physical oscillation and a criterion to design the smoothness indicator for high order shock capturing schemes. Secondly, we introduce our recent results based on the direct numerical simulations and experi-mental verification, including the localization of the axisymmetric modes, the development of trapped waves and the evolution of the flapping modes.
  • loading
  • [1]
    GOLDSTEIN M E. Aeroacoustics of turbulent shear flows[J]. Annual Review of Fluid Mechanics, 1984, 16: 263–285. doi: 10.1146/annurev.fl.16.010184.001403
    [2]
    李晓东, 徐希海, 高军辉, 等. 喷流噪声研究进展与展望[J]. 空气动力学学报, 2018, 36(3): 398–409.

    LI X D, XU X H, GAO J H, et al. Progress and prospect on jet noise study[J]. Acta Aerodynamica Sinica, 2018, 36(3): 398–409.
    [3]
    TAM C K W. Supersonic jet noise[J]. Annual Review of Fluid Mechanics, 1995, 27: 17–43. doi: 10.1146/annurev.fl.27.010195.000313
    [4]
    SEINER J. Advances in high speed jet aeroacoustics[C]//Proc of the 9th Aeroacoustics Conference. 1984. doi: 10.2514/6.1984-2275.
    [5]
    POWELL A. On the mechanism of choked jet noise[J]. Proceedings of the Physical Society Section B, 1953, 66(12): 1039–1056. doi: 10.1088/0370-1301/66/12/306
    [6]
    POWELL A. On the noise emanating from a two-dimensional jet above the critical pressure[J]. Aeronautical Quarterly, 1953, 4(2): 103–122. doi: 10.1017/s0001925900000822
    [7]
    POWELL A. On edge tones and associated phenomena[J]. Acta Acust united with Acust, 1953, 3: 233–243.
    [8]
    POWELL A. The reduction of choked jet noise[J]. Proceedings of the Physical Society Section B, 1954, 67(4): 313–327. doi: 10.1088/0370-1301/67/4/306
    [9]
    POWELL A, UMEDA Y, ISHII R. Observations of the oscillation modes of choked circular jets[J]. The Journal of the Acoustical Society of America, 1992, 92(5): 2823–2836. doi: 10.1121/1.404398
    [10]
    MERLE M. Sur les fréquencies des sondes émises par un jet d'air á grande vitesse[J]. C. R. Academy of Science Paris, 1956, 243: 490–493.
    [11]
    DAVIES M G, OLDFIELD D E S. Tones from a choked axisymmetric jet. I. cell structure, eddy velocity and source locations[J]. Acustica, 1962, 12: 257–266.
    [12]
    DAVIES M G, OLDFIELD D E S. Tones from a choked axisymmetric jet. II. The self excited loop and mode of oscillatiion[J]. Acustica, 1962, 12: 267–277.
    [13]
    PONTON M K, SEINER J M. The effects of nozzle exit lip thickness on plume resonance[J]. Journal of Sound and Vibration, 1992, 154(3): 531–549. doi: 10.1016/0022-460X(92)90784-U
    [14]
    CLEM M M, ZAMAN K, FAGAN A F. Variation of shock-spacing during screech stage-jumps[J]. International Journal of Aeroacoustics, 2016, 15(3): 324–335. doi: 10.1177/1475472x16630888
    [15]
    TAM C K W, AHUJA K K, JONES R R III. Screech tones from free and ducted supersonic jets[J]. AIAA Journal, 1994, 32(5): 917–922. doi: 10.2514/3.12074
    [16]
    RAMAN G. Supersonic jet screech: half-century from Powell to the present[J]. Journal of Sound and Vibration, 1999, 225(3): 543–571. doi: 10.1006/jsvi.1999.2181
    [17]
    WESTLEY R, WOOLLEY J H. An investigation of the near noise fields of a choked axisymmetric air jet[J]. National Research Council, Aeronautical Report LR, 1968, 20-21: 147–167.
    [18]
    WESTLEY R, WOOLLEY J H. The near field sound pressures of a choked jet during a screech cycle[R]. AGARD-CP-42, 1969.
    [19]
    WESTLEY R, WOOLLEY J H. The near field sound pressures of a choked jet when oscillating in the spinning mode[C]//Proc of the 2nd Aeroacoustics Conference. 1975. doi: 10.2514/6.1975-479
    [20]
    UMEDA Y, ISHII R. Sound sources of screech tone radiated from circular supersonic jet oscillating in the helical mode[J]. International Journal of Aeroacoustics, 2002, 1(4): 355–384. doi: 10.1260/147547202765275961
    [21]
    HARPER-BOURNE M, FISHER M J. The noise from shock waves in supersonic jets[R]. AGARD-CP-131, 1973.
    [22]
    TANNA H K. An experimental study of jet noise part I: turbulent mixing noise[J]. Journal of Sound and Vibration, 1977, 50(3): 405–428. doi: 10.1016/0022-460X(77)90493-X
    [23]
    TANNA H K. An experimental study of jet noise part II: shock associated noise[J]. Journal of Sound and Vibration, 1977, 50(3): 429–444. doi: 10.1016/0022-460x(77)90494-1
    [24]
    TAM C K W, TANNA H K. Shock associated noise of supersonic jets from convergent-divergent nozzles[J]. Journal of Sound and Vibration, 1982, 81(3): 337–358. doi: 10.1016/0022-460X(82)90244-9
    [25]
    BRIDGES J, WERNET M. Turbulence associated with broadband shock noise in hot jets[C]//Proc of the 14th AIAA/CEAS Aeroacoustics Conference (29th AIAA Aeroacoustics Conference). 2008. doi: 10.2514/6.2008-2834
    [26]
    VISWANATHAN K. Scaling laws and a method for identifying components of jet noise[J]. AIAA Journal, 2006, 44(10): 2274–2285. doi: 10.2514/1.18486
    [27]
    VISWANATHAN K, ALKISLAR M B, CZECH M J. Characteristics of the shock noise component of jet noise[J]. AIAA Journal, 2010, 48(1): 25–46. doi: 10.2514/1.38521
    [28]
    KUO C W, McLAUGHLIN D K, MORRIS P. Effects of supersonic jet conditions on broadband shock-associated noise[R]. AIAA-2011-1032, 2011.
    [29]
    SHEN H, TAM C K W. Numerical simulation of the generation of axisymmetric mode jet screech tones[J]. AIAA Journal, 1998, 36: 1801–1807. doi: 10.2514/3.14051
    [30]
    SHEN H, TAM C K W. Effects of jet temperature and nozzle-lip thickness on screech tones[J]. AIAA Journal, 2000, 38: 762–767. doi: 10.2514/3.14478
    [31]
    SHEN H, TAM C K W. Three-dimensional numerical simula-tion of the jet screech phenomenon[J]. AIAA Journal, 2002, 40: 33–41. doi: 10.2514/3.14995
    [32]
    LI X D, GAO J H. Numerical simulation of the generation mechanism of axisymmetric supersonic jet screech tones[J]. Physics of Fluids, 2005, 17(8): 085105. doi: 10.1063/1.2033909
    [33]
    LI X D, GAO J H. Numerical simulation of the three-dimensional screech phenomenon from a circular jet[J]. Physics of Fluids, 2008, 20(3): 035101. doi: 10.1063/1.2844474
    [34]
    KIM Y S, NAKAMURA Y. Effect of nozzle lip shape on screech tone in supersonic jet[R]. AIAA-2006-3706, 2006.
    [35]
    BERLAND J, BOGEY C, BAILLY C. Numerical study of screech generation in a planar supersonic jet[J]. Physics of Fluids, 2007, 19(7): 075105. doi: 10.1063/1.2747225
    [36]
    LOH C Y, HULTGREN L S, JORGENSON P C E. Near field screech noise computation for an underexpanded supersonic jet by the CE/SE method[R]. AIAA-2001-2252, 2001.
    [37]
    JORGENSON P C E, LOH C Y. Computing axisymmetric jet screech tones using unstructured grids[R]. AIAA-2002-3889, 2002.
    [38]
    LOH C Y, HIMANSU A, HULTGREN L S. A 3-D CE/SE navier-stokes solver with unstructured hexahedral grid for computation of nearfield jet screech noise[C]//Proc of the 9th AIAA/CEAS Aeroacoustics Conference and Exhibit. 2003. doi: 10.2514/6.2003-3207
    [39]
    LOH C Y, HULTGREN L S. Near-field noise computation for a supersonic circular jet[R]. AIAA-2005-3042, 2005.
    [40]
    LOH C Y, HULTGREN L S. Jet screech noise computa-tion[J]. AIAA Journal, 2006, 44(5): 992–998. doi: 10.2514/1.4591
    [41]
    IMAMOGLU B, BAYSAL O, BALAKUMAR P. Computa-tion of shock induced noise in imperfectly expanded super-sonic jets[R]. AIAA-2002-2527, 2002.
    [42]
    IMAMOGLU B, BALAKUMAR P. Three dimensional computation of shock induced noise in imperfectly expanded supersonic jets[C]//Proc of the 9th AIAA/CEAS Aeroacou-stics Conference and Exhibit. 2003. doi: 10.2514/6.2003-3249
    [43]
    IMAMOGLU B, BAYSAL O, BALAKUMAR P. Computa-tion of shock induced noise in imperfectly expanded super-sonic jets[J]. International Journal of Aeroacoustics. 2007, 6(2): 127-146. doi: 10.1260/147547207781041877
    [44]
    AL-QADI I M A, SCOTT J N. High-order three-dimensional numerical simulation of a supersonic rectangu-lar jet[R]. AIAA-2003-3238, 2003. doi: 10.2514/6.2003-3238
    [45]
    LO S C. Numerical simulations of supersonic jet flows[D]. Indiana: Purdue University, 2010.
    [46]
    GAO J H, LI X D. Large eddy simulation of supersonic jet noise from a circular nozzle[J]. International Journal of Aeroacoustics, 2011, 10(4): 465–474. doi: 10.1260/1475-472x.10.4.465
    [47]
    BODONY D J, LELE S K. Current status of jet noise predictions using large-eddy simulation[J]. AIAA Journal, 2008, 46(2): 364–380. doi: 10.2514/1.24475
    [48]
    LIU J H, KAILASANATH K, RAMAMURTI R, et al. Large-eddy simulations of a supersonic jet and its near-field acoustic properties[J]. AIAA Journal, 2009, 47(8): 1849–1865. doi: 10.2514/1.43281
    [49]
    MUNDAY D, GUTMARK E, LIU J, et al. Flow structure and acoustics of supersonic jets from conical convergent-divergent nozzles[J]. Physics of Fluids, 2011, 23(11): 116102. doi: 10.1063/1.3657824
    [50]
    DU Y L. Supersonic jet noise prediction and noise source investigation for realistic baseline and chevron nozzles based on hybrid RANS/LES simulations[D]. Common-wealth of Pennsylvania: The Pennsylvania State Univerisity, 2011.
    [51]
    LIU J H, CORRIGAN A, KAILASANATH K, et al. Computational study of shock-associated noise characteris-tics using LES[R]. AIAA-2013-2199, 2013.
    [52]
    MANNING T A, LELE S K. A numerical investigation of sound generation in supersonic jet screech[C]//Proc of the 6th Aeroacoustics Conference and Exhibit. 2000. doi: 10.2514/6.2000-2081
    [53]
    SUZUKI T, LELE S K. Shock leakage through an unsteady vortex-laden mixing layer: application to jet screech[J]. Journal of Fluid Mechanics, 2003, 490: 139–167. doi: 10.1017/s0022112003005214
    [54]
    LUI C C M. A numerical investigation of shock-associated noise[D]. State of California: Stanford University, 2003.
    [55]
    李晓东, 江旻, 高军辉, 等. 计算气动声学进展与展望[J]. 中国科学: 物理学 力学 天文学, 2014, 44(3): 234–248.

    LI X D, JIANG M, GAO J H, et al. Progress and prospective of computational aeroacoustics[J]. Scientia Sinica: Physica, Mechanica & Astronomica, 2014, 44(3): 234–248.
    [56]
    COCKBURN B, SHU C W. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework[J]. Mathematics of Computation, 1989, 52(186): 411–435. doi: 10.1090/s0025-5718-1989-0983311-4
    [57]
    LIU Y, VINOKUR M, WANG Z J. Spectral difference method for unstructured grids I: Basic formulation[J]. Journal of Computational Physics, 2006, 216(2): 780–801. doi: 10.1016/j.jcp.2006.01.024
    [58]
    WANG Z J. Spectral (finite) volume method for conserva-tion laws on unstructured grids: basic formulation[J]. Journal of Computational Physics, 2002, 178(1): 210–251. doi: 10.1006/jcph.2002.7041
    [59]
    JIANG G S, SHU C W. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics, 1996, 126(1): 202–228. doi: 10.1006/jcph.1996.0130
    [60]
    DENG X G, ZHANG H X. Developing high-order weighted compact nonlinear schemes[J]. Journal of Computational Physics, 2000, 165(1): 22–44. doi: 10.1006/jcph.2000.6594
    [61]
    ZHANG S H, JIANG S F, SHU C W. Development of nonlinear weighted compact schemes with increasingly higher order accuracy[J]. Journal of Computational Physics, 2008, 227(15): 7294–7321. doi: 10.1016/j.jcp.2008.04.012
    [62]
    LIU X L, ZHANG S H, ZHANG H X, et al. A new class of central compact schemes with spectral-like resolution I: Linear schemes[J]. Journal of Computational Physics, 2013, 248: 235–256. doi: 10.1016/j.jcp.2013.04.014
    [63]
    LIU X L, ZHANG S H, ZHANG H X, et al. A new class of central compact schemes with spectral-like resolution II: hybrid weighted nonlinear schemes[J]. Journal of Computa-tional Physics, 2015, 284: 133–154. doi: 10.1016/j.jcp.2014.12.027
    [64]
    FU L, HU X Y, ADAMS N A. A family of high-order targeted ENO schemes for compressible-fluid simula-tions[J]. Journal of Computational Physics, 2016, 305: 333–359. doi: 10.1016/j.jcp.2015.10.037
    [65]
    ZHANG S H, SHU C W. A new smoothness indicator for the WENO schemes and its effect on the convergence to steady state solutions[J]. Journal of Scientific Computing, 2007, 31(1): 273–305. doi: 10.1007/s10915-006-9111-y
    [66]
    ZHANG S H, JIANG S F, SHU C W. Improvement of convergence to steady state solutions of Euler equations with the WENO schemes[J]. Journal of Scientific Comput-ing, 2011, 47(2): 216–238. doi: 10.1007/s10915-010-9435-5
    [67]
    BALSARA D S, SHU C W. Monotonicity preserving weighted essentially non-oscillatory schemes with increasing-ly high order of accuracy[J]. Journal of Computational Physics, 2000, 160(2): 405–452. doi: 10.1006/jcph.2000.6443
    [68]
    ZHANG S H, DENG X G, MAO M L, et al. Improvement of convergence to steady state solutions of Euler equations with weighted compact nonlinear schemes[J]. Acta Mathema-ticae Applicatae Sinica, English Series, 2013, 29(3): 449–464. doi: 10.1007/s10255-013-0230-6
    [69]
    WU C H, WU L, LI H, et al. Very high order WENO schemes using efficient smoothness indicators[J]. Journal of Computational Physics, 2021, 432: 110158. doi: 10.1016/j.jcp.2021.110158
    [70]
    WU C H, WU L, ZHANG S H. A smoothness indicator constant for sine functions[J]. Journal of Computational Physics, 2020, 419: 109661. doi: 10.1016/j.jcp.2020.109661
    [71]
    武从海, 李虎, 刘旭亮, 等. 7阶WENO-S格式的计算效率研究[J]. 力学学报, 2023, 55(1): 239–253.

    WU C H, LI H, LIU X L, et al. Investigation of the time efficiency of the seventh-order weno-s scheme[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(1): 239–253.
    [72]
    张树海, 李虎, 王益民. 含激波、旋涡和声波的复杂多尺度流动数值模拟研究[J]. 空气动力学学报, 2018, 36(3): 449–462.

    ZHANG S H, LI H, WANG Y M. Numerical study for complex multi-scale flow with shock, vortex and sound wave[J]. Acta Aerodynamica Sinica, 2018, 36(3): 449–462.
    [73]
    COLONIUS T, LELE S K, MOIN P. Sound generation in a mixing layer[J]. Journal of Fluid Mechanics, 1997, 330: 375–409. doi: 10.1017/s0022112096003928
    [74]
    CERRETELLI C, WILLIAMSON C H K. The physical mechanism for vortex merging[J]. Journal of Fluid Mechanics, 2003: 41-77.
    [75]
    MITCHELL B E, LELE S K, MOIN P. Direct computation of the sound from a compressible co-rotating vortex pair[J]. Journal of Fluid Mechanics, 1995, 285: 181–202. doi: 10.1017/s0022112095000504
    [76]
    ZHANG S H, LI H, LIU X L, et al. Classification and sound generation of two-dimensional interaction of two Taylor vortices[J]. Physics of Fluids, 2013, 25(5): 056103. doi: 10.1063/1.4807065
    [77]
    PARMENTIER P, WINCKELMANS G, CHATELAIN P. A Vortex Particle-Mesh method for subsonic compressible flows[J]. Journal of Computational Physics, 2018, 354: 692–716. doi: 10.1016/j.jcp.2017.10.040
    [78]
    ZHAO F X, JI X, SHYY W, et al. A compact high-order gas-kinetic scheme on unstructured mesh for acoustic and shock wave computations[J]. Journal of Computational Physics, 2022, 449: 110812. doi: 10.1016/j.jcp.2021.110812
    [79]
    FU L, HU X Y, ADAMS N A. Improved five- and six-point targeted essentially nonoscillatory schemes with adaptive dissipation[J]. AIAA Journal, 2019, 57(3): 1143–1158. doi: 10.2514/1.j057370
    [80]
    ELLZEY J L, HENNEKE M R, PICONE J M, et al. The interaction of a shock with a vortex: shock distortion and the production of acoustic waves[J]. Physics of Fluids, 1995, 7(1): 172–184. doi: 10.1063/1.868738
    [81]
    ELLZEY J L, HENNEKE M R. The shock-vortex interac-tion: the origins of the acoustic wave[J]. Fluid Dynamics Research, 1997, 21(3): 171–184. doi: 10.1016/S0169-5983(97)00006-3
    [82]
    ELLZEY J L, HENNEKE M R. The acoustic wave from a shock-vortex interaction: comparison between theory and computation[J]. Fluid Dynamics Research, 2000, 27(1): 53–64. doi: 10.1016/S0169-5983(99)00041-6
    [83]
    INOUE O, HATTORI Y. Sound generation by shock-vortex interactions[J]. Journal of Fluid Mechanics, 1999, 380: 81–116. doi: 10.1017/s0022112098003565
    [84]
    INOUE O. Propagation of sound generated by weak shock-vortex interaction[J]. Physics of Fluids, 2000, 12(5): 1258–1261. doi: 10.1063/1.870378
    [85]
    INOUE O, TAKAHASHI T, HATAKEYAMA N. Separa-tion of reflected shock waves due to the secondary interac-tion with vortices: another mechanism of sound generation[J]. Physics of Fluids, 2002, 14(10): 3733–3744. doi: 10.1063/1.1507592
    [86]
    ZHANG S H, ZHANG Y T, SHU C W. Multistage interaction of a shock wave and a strong vortex[J]. Physics of Fluids, 2005, 17(11): 116101. doi: 10.1063/1.2084233
    [87]
    CHATTERJEE A, VIJAYARAJ S. Multiple sound genera-tion in interaction of shock wave with strong vortex[J]. AIAA Journal, 2008, 46(10): 2558–2567. doi: 10.2514/1.36050
    [88]
    ZHANG S H, ZHANG Y T, SHU C W. Interaction of an oblique shock wave with a pair of parallel vortices: shock dynamics and mechanism of sound generation[J]. Physics of Fluids, 2006, 18(12): 126101. doi: 10.1063/1.2391806
    [89]
    ZHANG S H, JIANG S F, ZHANG Y T, et al. The mechanism of sound generation in the interaction between a shock wave and two counter-rotating vortices[J]. Physics of Fluids, 2009, 21(7): 076101. doi: 10.1063/1.3176473
    [90]
    刘旭亮, 张树海. 二维激波与剪切层相互作用的直接数值模拟研究[J]. 力学学报, 2013, 45(1): 61–75. doi: 10.6052/0459-1879-12-106

    LIU X L, ZHANG S H. Direct numerical simulation of the interaction of 2d shock wave and shear layer[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(1): 61–75. doi: 10.6052/0459-1879-12-106
    [91]
    李虎. 轴对称超声速喷流激波噪声数值模拟研究[D]. 绵阳: 中国空气动力研究与发展中心. 2016.
    [92]
    PANDA J. An experimental investigation of screech noise generation[J]. Journal of Fluid Mechanics, 1999, 378: 71–96. doi: 10.1017/s0022112098003383
    [93]
    PONTON M K, SEINER J M, BROWN M C. Near field pressure fluctuations in the exit plane of a choked axisym-metric nozzle[R]. NASA Technical Memorandum 113137, 1997.
    [94]
    李虎, 罗勇, 韩帅斌, 等. 基于模态分解的轴对称超声速射流啸声产生位置数值分析[J]. 力学学报, 2022, 54(4): 975–990.

    LI H, LUO Y, HAN S B, et al. Numerical study on the generation position of screech tone in axisymmetric super-sonic jet based on modal decomposition[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 975–990.
    [95]
    LI H, LUO Y, HAN S, et al. The source localization and dynamical evolution of axisymmetric screech modes in underexpanded supersonic jets[J]. Aerospace Science and Technology, 2023, 140: 108427. doi: 10.1016/j.ast.2023.108427
    [96]
    HAN S B, LUO Y, LI H, et al. Data-driven and physical property-based hydro-acoustic mode decomposition[J]. Physics of Fluids, 2022, 34(2): 26102. doi: 10.1063/5.0079906
    [97]
    GOJON R, BOGEY C, MIHAESCU M. Oscillation modes in screeching jets[J]. AIAA Journal, 2018, 56(7): 2918–2924. doi: 10.2514/1.j056936
    [98]
    BOGEY C. Interactions between upstream-propagating guided jet waves and shear-layer instability waves near the nozzle of subsonic and nearly ideally expanded supersonic free jets with laminar boundary layers[J]. Journal of Fluid Mechanics, 2022, 949: A41. doi: 10.1017/jfm.2022.776
    [99]
    EDGINGTON-MITCHELL D, JAUNET V, JORDAN P, et al. Upstream-travelling acoustic jet modes as a closure mechanism for screech[J]. Journal of Fluid Mechanics, 2018, 855: R1. doi: 10.1017/jfm.2018.642
    [100]
    EDGINGTON-MITCHELL D, WANG T Y, NOGUEIRA P, et al. Waves in screeching jets[J]. Journal of Fluid Mechanics, 2021, 913: A7. doi: 10.1017/jfm.2020.1175
    [101]
    EDGINGTON-MITCHELL D, LI X R, LIU N H, et al. A unifying theory of jet screech[J]. Journal of Fluid Mechanics, 2022, 945: A8. doi: 10.1017/jfm.2022.549
    [102]
    UNNIKRISHNAN S, GAITONDE D V. Acoustic, hydrodyna-mic and thermal modes in a supersonic cold jet[J]. Journal of Fluid Mechanics, 2016, 800: 387–432. doi: 10.1017/jfm.2016.410
    [103]
    罗勇. 复杂剪切流动数值模拟及噪声产生机理研究[D]. 绵阳: 中国空气动力研究与发展中心. 2023.
    [104]
    SEINER J M, MANNING J C, PONTON M K. The preferred spatial mode of instability for a Mach 2 jet[C]//Proc of the 10th Aeroacoustics Conference. 1986. doi: 10.2514/6.1986-1942.
    [105]
    EDGINGTON-MITCHELL D, WEIGHTMAN J, LOCK S, et al. The generation of screech tones by shock leakage[J]. Journal of Fluid Mechanics, 2021, 908: A46. doi: 10.1017/jfm.2020.945
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(44)  / Tables(1)

    Article Metrics

    Article views (91) PDF downloads(46) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return