Citation: | LI G Q, ZHAO X H, YI S H, et al. Research progress on rotor reverse flow and dynamic stall flow control methods[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(4): 29-47. DOI: 10.11729/syltlx20230054 |
[1] |
LEISHMAN G J Principles of helicopter aerodynamics with CD extra[M]. 2nd edition. Cambridge: Cambridge University Press, 2006.
|
[2] |
张卫国, 李国强, 李栋, 等. 旋翼翼型动态风洞试验技术研究[J]. 实验流体力学, 2023, 37(2): 78–93. DOI: 10.11729/syltlx20210147
ZHANG W G, LI G Q, LI D, et al. Research on dynamic wind tunnel testing of rotor airfoil[J]. Journal of experiments in fluid mechanics, 2023, 37(2): 78–93. doi: 10.11729/syltlx20210147
|
[3] |
SANTRA S, GREENBLATT D. Dynamic stall control model for pitching airfoils with slot blowing[J]. AIAA Journal, 2021, 59(1): 400–404. doi: 10.2514/1.J059818
|
[4] |
张卫国, 李国强, 宋奎辉, 等. 旋翼翼型高速风洞动态试验装置研制[J]. 工程设计学报, 2022, 29(4): 500–509. DOI: 10.3785/j.issn.1006-754X.2022.00.056
ZHANG W G, LI G Q, SONG K H, et al. Development of dynamic test equipment for rotor airfoil in high speed wind tunnel[J]. Chinese Journal of Engineering Design, 2022, 29(4): 500–509. doi: 10.3785/j.issn.1006-754X.2022.00.056
|
[5] |
史志伟, 耿存杰, 明晓, 等. 旋翼翼型俯仰沉浮运动非定常气动特性实验研究[J]. 实验流体力学, 2007, 21(3): 18–23. DOI: 10.3969/j.issn.1672-9897.2007.03.004
SHI Z W, GENG C J, MING X, et al. Experimental investigation on unsteady aerodynamics of rotor-blade airfoil[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(3): 18–23. doi: 10.3969/j.issn.1672-9897.2007.03.004
|
[6] |
BAILEY F J, Jr, GUSTAFSON F B. Observations in flight of the region of stalled flow over the blades of an autogiro rotor[R]. NACA-TN-741, 1939.
|
[7] |
DATTA A, YEO H, NORMAN T R. Experimental investigation and fundamental understanding of a full-scale slowed rotor at high advance ratios[J]. Journal of the American Helicopter Society, 2013, 58(2): 1–17. doi: 10.4050/jahs.58.022004
|
[8] |
袁明川, 杨永飞, 林永峰. 高速直升机旋翼反流区桨叶剖面翼型气动特性CFD分析[J]. 直升机技术, 2015(1): 1–5, 12. DOI: 10.3969/j.issn.1673-1220.2015.01.001
YUAN M C, YANG Y F, LIN Y F. CFD analysis on aerodynamic characteristics of blade profiles in reverse flow region of high speed helicopter rotor[J]. Helicopter Technique, 2015(1): 1–5, 12. doi: 10.3969/j.issn.1673-1220.2015.01.001
|
[9] |
HASSAN A A, STRAUB F K, NOONAN K W. Experimental/numerical evaluation of integral trailing edge flaps for helicopter rotor applications[J]. Journal of the American Helicopter Society, 2005, 50(1): 3–17. doi: 10.4050/1.3092838
|
[10] |
孔卫红, 陈仁良. 反流区对复合高速直升机旋翼气动特性的影响[J]. 航空学报, 2011, 32(2): 223–230.
KONG W H, CHEN R L. Effect of reverse flow region on characteristics of compound high speed helicopter rotor[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(2): 223–230.
|
[11] |
LIND A H, SMITH L R, MILLUZZO J I, et al. Reynolds number effects on rotor blade sections in reverse flow[J]. Journal of Aircraft, 2016, 53(5): 1248–1260. doi: 10.2514/1.C033556
|
[12] |
MABEY D. Some aspects of aircraft dynamic loads due to flow separation[J]. Progress in Aerospace Sciences, 1989, 26(2): 115–151. doi: 10.1016/0376-0421(89)90006-7
|
[13] |
WILLIAMSON C H K, GOVARDHAN R. Vortex-induced vibrations[J]. Annual Review of Fluid Mechanics, 2004, 36: 413–455. doi: 10.1146/annurev.fluid.36.050802.122128
|
[14] |
GARDNER A D, JONES A R, MULLENERS K, et al. Review of rotating wing dynamic stall: experiments and flow control[J]. Progress in Aerospace Sciences, 2023, 137: 100887. doi: 10.1016/j.paerosci.2023.100887
|
[15] |
ZHU C Y, QIU Y N, WANG T G. Dynamic stall of the wind turbine airfoil and blade undergoing pitch oscillations: a comparative study[J]. Energy, 2021, 222: 120004. doi: 10.1016/j.energy.2021.120004
|
[16] |
陈恺, 张震宇, 王同光. 反流及径向流动相互作用下刚性旋翼气动特性研究[J]. 南京航空航天大学学报, 2019, 51(2): 187–193. DOI: 10.16356/j.1005-2615.2019.02.008
CHEN K, ZHANG Z Y, WANG T G. Numerical study of sweep effect on aerodynamic characteristics of helicopter rotor blade in reverse flow[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2019, 51(2): 187–193. doi: 10.16356/j.1005-2615.2019.02.008
|
[17] |
钱宇, 蒋皓. 基于动网格技术的机翼动态失速仿真分析[J]. 科学技术与工程, 2021, 21(15): 6501–6505. DOI: 10.3969/j.issn.1671-1815.2021.15.055
QIAN Y, JIANG H. Simulation analysis of wing dynamic stall based on dynamic mesh technology[J]. Science Technology and Engineering, 2021, 21(15): 6501–6505. doi: 10.3969/j.issn.1671-1815.2021.15.055
|
[18] |
CARTA M, PUTZU R, GHISU T. A comparison of plunging- and pitching-induced deep dynamic stall on an SD7003 airfoil using URANS and LES simulations[J]. Aerospace Science and Technology, 2022, 121: 107307. doi: 10.1016/j.ast.2021.107307
|
[19] |
RAGHAV V, MAYO M, LOZANO R, et al. Evidence of vortex-induced lift on a yawed wing in reverse flow[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2014, 228(11): 2130–2137. doi: 10.1177/0954410013511597
|
[20] |
SMITH L R, JONES A R. Measurements on a yawed rotor blade pitching in reverse flow[J]. Physical Review Fluids, 2019, 4(3): 034703. doi: 10.1103/physrevfluids.4.034703
|
[21] |
谢凯, ABBAS L K, 陈东阳, 等. 翼型非定常来流下复合运动动态失速仿真[J]. 哈尔滨工程大学学报, 2019, 40(5): 865–871. DOI: 10.11990/jheu.201711100
XIE K, ABBAS L K, CHEN D Y, et al. Numerical simulations on dynamic stall of a complex motion of airfoil under unsteady freestream velocity[J]. Journal of Harbin Engineering University, 2019, 40(5): 865–871. doi: 10.11990/jheu.201711100
|
[22] |
CRITZOS C C, HEYSON H H, BOSWINKLE R W, Jr. Aerodynamic characteristics of NACA 0012 airfoil section at angles of attack from 0° to 180°[R]. NACA-TN-3361, 1955.
|
[23] |
SMITH M J. An assessment of the state-of-the-art from the 2019 ARO dynamic stall workshop[C]//Proc of the AIAA Aviation 2020 Forum. 2020: 2697. doi: 10.2514/6.2020-2697
|
[24] |
HICKS M A, BARBER A E II, BABBITT P C. The nucleophilic attack six-bladed β-propeller (N6P) super-family[M]//ORENGO C, BATEMAN A. Protein Families: Relating Protein Sequence, Structure, and Function. NJ, USA: John Wiley & Sons, Inc., 2013: 125-158. doi: 10.1002/9781118743089.ch6
|
[25] |
BAGAI A. Aerodynamic design of the X2 technology demonstrator™ main rotor blade[J]. Annual Forum Proceedings - American Helicopter Society, 2008, 64(1): 29.
|
[26] |
ASHTON N, BILLARD F, MOULINEC C, et al. The numerical simulation of the flow over a EC145 helicopter fuselage using HPC facilities[C]//Proc of the 23rd International Conference on Parallel Computational Fluid Dynamics. 2011.
|
[27] |
SHEN J W, CHOPRA I. A parametric design study for a swashplateless helicopter rotor with trailing-edge flaps[J]. Journal of the American Helicopter Society, 2004, 49(1): 43–53. doi: 10.4050/jahs.49.43
|
[28] |
LIND A H, LEFEBVRE J N, JONES A R. Time-averaged aerodynamics of sharp and blunt trailing-edge static airfoils in reverse flow[J]. AIAA Journal, 2014, 52(12): 2751–2764. doi: 10.2514/1.J052967
|
[29] |
LIND A H, JONES A R. Vortex shedding from airfoils in reverse flow[J]. AIAA Journal, 2015, 53(9): 2621–2633. doi: 10.2514/1.J053764
|
[30] |
LIND A H, JONES A R. Unsteady aerodynamics of reverse flow dynamic stall on an oscillating blade section[J]. Physics of Fluids, 2016, 28(7): 077102. doi: 10.1063/1.4958334
|
[31] |
厉聪聪, 史勇杰, 徐国华, 等. 基于动态前缘下垂的提升旋翼前飞性能的研究[J]. 西北工业大学学报, 2021, 39(3): 668–674. DOI: 10.3969/j.issn.1000-2758.2021.03.025
LI C C, SHI Y J, XU G H, et al. Research on the forward flight performance of rotor based on variable-droop leading edge[J]. Journal of Northwestern Polytechnical University, 2021, 39(3): 668–674. doi: 10.3969/j.issn.1000-2758.2021.03.025
|
[32] |
蔡畅. 仿座头鲸鳍肢前缘凸起对翼型失速特性控制机理研究[D]. 北京: 清华大学, 2018: 105-106.
CAI C. Effects of leading-edge protuberances inspired by humpback whale flipper on airfoil stall control[D]. Beijing: Tsinghua University, 2018: 105-106. doi: 10.27266/d.cnki.gqhau.2018.000320
|
[33] |
侯宇飞, 李志平. 仿生正弦前缘对翼面动态失速的影响[J]. 航空学报, 2020, 41(1): 139–151. DOI: 10.7527/S1000-6893.2019.23276
HOU Y F, LI Z P. Effect of bionic sinusoidal leading-edge on dynamic stall of airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(1): 139–151. doi: 10.7527/S1000-6893.2019.23276
|
[34] |
张一楠. 仿鲸鱼鳍风力机翼型气动力性能控制研究[D]. 北京: 中国科学院大学, 2020: 131-132.
ZHANG Y N. Research on aerodynamic performance control of wind turbine airfoil with leading-edge protuberances[D]. Beijing: University of Chinese Academy of Sciences, 2020: 131-132.
|
[35] |
HRYNUK J T, BOHL D G. The effects of leading-edge tubercles on dynamic stall[J]. Journal of Fluid Mechanics, 2020, 893: A5. doi: 10.1017/jfm.2020.216
|
[36] |
LU Y, LI Z Y, CHANG X, et al. An aerodynamic optimization design study on the bio-inspired airfoil with leading-edge tubercles[J]. Engineering Applications of Computational Fluid Mechanics, 2021, 15(1): 292–312. doi: 10.1080/19942060.2020.1856723
|
[37] |
吴立明, 姜怡欣, 刘小民, 等. 几种仿生翼型动态失速特性的数值分析[J]. 西安交通大学学报, 2022, 56(9): 1–9. DOI: 10.7652/xjtuxb202209001
WU L M, JIANG Y X, LIU X M, et al. Numerical analysis of dynamic stall characteristics of several bionic airfoils[J]. Journal of Xi’an Jiaotong University, 2022, 56(9): 1–9. doi: 10.7652/xjtuxb202209001
|
[38] |
LIU J, CHEN R, LOU J, et al. Deep-learning-based aerodynamic shape optimization of rotor airfoils to suppress dynamic stall[J]. Aerospace Science and Technology, 2023, 133: 108089. doi: 10.1016/j.ast.2022.108089
|
[39] |
褚胡冰, 张彬乾, 陈迎春, 等. 微型涡流发生器控制增升装置流动分离研究[J]. 西北工业大学学报, 2011, 29(5): 799–805. DOI: 10.3969/j.issn.1000-2758.2011.05.026
CHU H B, ZHANG B Q, CHEN Y C, et al. Controlling flow separation of high lift transport aircraft with micro vortex generators[J]. Journal of Northwestern Polytechnical University, 2011, 29(5): 799–805. doi: 10.3969/j.issn.1000-2758.2011.05.026
|
[40] |
HEINE B, MULLENERS K, JOUBERT G, et al. Dynamic stall control by passive disturbance generators[J]. AIAA Journal, 2013, 51(9): 2086–2097. doi: 10.2514/1.J051525
|
[41] |
赵振宙, 孟令玉, 王同光, 等. 涡流发生器对风力机翼段动态失速影响[J]. 哈尔滨工程大学学报, 2021, 42(2): 233–239. DOI: 10.11990/jheu.201908076
ZHAO Z Z, MENG L Y, WANG T G, et al. Influence of vortex generators on dynamic stall of wind turbine airfoil segment[J]. Journal of Harbin Engineering University, 2021, 42(2): 233–239. doi: 10.11990/jheu.201908076
|
[42] |
LI S, ZHANG L, XU J, et al. Experimental investigation of a pitch-oscillating wind turbine airfoil with vortex generators[J]. Journal of Renewable and Sustainable Energy, 2020, 12(6): 063304. doi: 10.1063/5.0013300
|
[43] |
赵振宙, 孟令玉, 苏德程, 等. 涡流发生器形状对风力机翼段动态失速的影响[J]. 工程热物理学报, 2021, 42(8): 1989–1996.
ZHAO Z Z, MENG L Y, SU D C, et al. Effect of vortex generator shape on dynamic stall of wind turbine airfoil[J]. Journal of Engineering Thermophysics, 2021, 42(8): 1989–1996.
|
[44] |
DE TAVERNIER D, FERREIRA C, VIRÉ A, et al. Controlling dynamic stall using vortex generators on a wind turbine airfoil[J]. Renewable Energy, 2021, 172: 1194–1211. doi: 10.1016/j.renene.2021.03.019
|
[45] |
NAIR N J, GOZA A. Fluid-structure interaction of a bio-inspired passively deployable flap for lift enhancement[J]. Physical Review Fluids, 2022, 7(6): 064701. doi: 10.1103/physrevfluids.7.064701
|
[46] |
KAUFMANN K, GARDNER A D, RICHTER K. Numerical investigations of a back-flow flap for dynamic stall control[M]//DILLMANN A, HELLER G, KRÄMER E, et al. New results in numerical and experimental fluid mechanics IX. Cham: Springer International Publishing, 2014: 255-262. doi: 10.1007/978-3-319-03158-3_26
|
[47] |
余海洋, 耿海超, 罗大海. 回流襟翼控制S809翼型动态失速的数值模拟研究[J]. 热能动力工程, 2020, 35(11): 127–134. DOI: 10.16146/j.cnki.rndlgc.2020.11.019
YU H Y, GENG H C, LUO D H. Numerical investigation of a back-flow flap control for S809 airfoil dynamic stall[J]. Journal of Engineering for Thermal Energy and Power, 2020, 35(11): 127–134. doi: 10.16146/j.cnki.rndlgc.2020.11.019
|
[48] |
薛世成, 缪维跑, 李春, 等. 尾缘气动弹片对翼型动态失速特性影响研究[J]. 热能动力工程, 2021, 36(12): 142–150. DOI: 10.16146/j.cnki.rndlgc.2021.12.021
XUE S C, MIAO W P, LI C, et al. Effect of trailing edge aerodynamic flap on dynamic stall characteristics of airfoil[J]. Journal of Engineering for Thermal Energy and Power, 2021, 36(12): 142–150. doi: 10.16146/j.cnki.rndlgc.2021.12.021
|
[49] |
李根, 缪维跑, 李春, 等. 凹槽-襟翼对翼型动态失速特性影响研究[J]. 热能动力工程, 2022, 37(3): 151–159. DOI: 10.16146/j.cnki.rndlgc.2022.03.022
LI G, MIAO W P, LI C, et al. Effect of trailing edge dimple-flap on dynamic stall characteristics of airfoil[J]. Journal of Engineering for Thermal Energy and Power, 2022, 37(3): 151–159. doi: 10.16146/j.cnki.rndlgc.2022.03.022
|
[50] |
OPITZ S, GARDNER A D, KAUFMANN K. Aerodynamic and structural investigation of an active back-flow flap for dynamic stall control[J]. CEAS Aeronautical Journal, 2014, 5(3): 279–291. doi: 10.1007/s13272-014-0106-3
|
[51] |
向斌, 缪维跑, 李春, 等. 翼型前缘的气动滑片对动态失速特性的影响分析[J]. 动力工程学报, 2020, 40(9): 765–772.
XIANG B, MIAO W P, LI C, et al. Effects of leading edge aerodynamic sliding vane on dynamic stall characteristics of the airfoil[J]. Journal of Chinese Society of Power Engineering, 2020, 40(9): 765–772.
|
[52] |
SALIMIPOUR E, YAZDANI S, GHALAMBAZ M. Simulation of airfoil dynamic stall suppression with a burst control blade in a transitional flow regime[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2022, 44(8): 1–12. doi: 10.1007/s40430-022-03690-w
|
[53] |
张馨艺, 孙晓晶. 带局部运动表面翼型的动态失速特性研究[J]. 动力工程学报, 2022, 42(9): 821–828. DOI: 10.19805/j.cnki.jcspe.2022.09.005
ZHANG X Y, SUN X J. Study on dynamic stall characteristics of the airfoil with locally moving surface[J]. Journal of Chinese Society of Power Engineering, 2022, 42(9): 821–828. doi: 10.19805/j.cnki.jcspe.2022.09.005
|
[54] |
WYGNANSKI I, NEWMAN B G. The effect of jet entrainment on lift and moment for a thin aerofoil with blowing[J]. Aeronautical Quarterly, 1964, 15(2): 122–150. doi: 10.1017/s0001925900003085
|
[55] |
YU Y H, LEE S, McALISTER K W, et al. Dynamic stall control for advanced rotorcraft application[J]. AIAA Journal, 1995, 33(2): 289–295. doi: 10.2514/3.12496
|
[56] |
CHEESEMAN I C, SEED A R. The application of circulation control by blowing to helicopter rotors[J]. The Aeronautical Journal, 1967, 71(679): 451–467. doi: 10.1017/s0001924000055238
|
[57] |
WEAVER D, MCALISTER K, TSO J. Suppression of dynamic stall by steady and pulsed upper-surface blowing[C]//Proc of the 16th AIAA Applied Aerodynamics Conference. 1998: 2413. doi: 10.2514/6.1998-2413
|
[58] |
SINGH C, PEAKE D J, KOKKALIS A, et al. Control of rotorcraft retreating blade stall using air-jet vortex generators[J]. Journal of Aircraft, 2006, 43(4): 1169–1176. doi: 10.2514/1.18333
|
[59] |
SEIFERT A, DARABI A, WYGANSKI I. Delay of airfoil stall by periodic excitation[J]. Journal of Aircraft, 1996, 33(4): 691–698. doi: 10.2514/3.47003
|
[60] |
NISHRI B, WYGNANSKI I. Effects of periodic excitation on turbulent flow separation from a flap[J]. AIAA Journal, 1998, 36(4): 547–556. doi: 10.2514/2.428
|
[61] |
GARDNER A D, RICHTER K, MAI H, et al. Experimental investigation of air jets for the control of compressible dynamic stall[J]. Journal of the American Helicopter Society, 2013, 58(4): 1–14. doi: 10.4050/jahs.58.042001
|
[62] |
GARDNER A D, RICHTER K, MAI H, et al. Experimental investigation of high-pressure pulsed blowing for dynamic stall control[J]. CEAS Aeronautical Journal, 2014, 5(2): 185–198. doi: 10.1007/s13272-014-0099-y
|
[63] |
MÜLLER-VAHL H F, STRANGFELD C, NAYERI C N, et al. Control of thick airfoil, deep dynamic stall using steady blowing[J]. AIAA Journal, 2014, 53(2): 277–295. doi: 10.2514/1.J053090
|
[64] |
RAMOS B L O, WOLF W R, YEH C A, et al. Active flow control for drag reduction of a plunging airfoil under deep dynamic stall[J]. Physical Review Fluids, 2019, 4(7): 074603. doi: 10.1103/physrevfluids.4.074603
|
[65] |
MATALANIS C G, MIN B Y, BOWLES P O, et al. Combustion-powered actuation for dynamic-stall suppres-sion: high-Mach simulations and low-Mach experiments[J]. AIAA Journal, 2015, 53(8): 2151–2163. doi: 10.2514/1.J053641
|
[66] |
CRITTENDEN T M, WOO G T K, GLEZER A. Combustion-powered actuation for transitory flow control[J]. AIAA Journal, 2018, 56(9): 3414–3435. doi: 10.2514/1.J056783
|
[67] |
ZHA G C, PAXTON C D. A novel airfoil circulation augment flow control method using co-flow jet[C]//Proc of the 2nd AIAA Flow Control Conference. 2004: 2208. doi: 10.2514/6.2004-2208
|
[68] |
ZHA G C, CARROLL B F, PAXTON C D, et al. High-performance airfoil using coflow jet flow control[J]. AIAA Journal, 2007, 45(8): 2087–2090. doi: 10.2514/1.20926
|
[69] |
ZHA G C, YANG Y C, REN Y, et al. Super-lift and thrusting airfoil of coflow jet actuated by micro-compressors[C]//Proc of the 2018 Flow Control Conference. 2018: 3061. doi: 10.2514/6.2018-3061
|
[70] |
LIU J Q, CHEN R Q, YOU Y C, et al. Numerical investigation of dynamic stall suppression of rotor airfoil via improved co-flow jet[J]. Chinese Journal of Aeronautics, 2022, 35(3): 169–184. doi: 10.1016/j.cja.2021.07.041
|
[71] |
LIU J Q, CHEN R Q, SONG Q C, et al. Active flow control of helicopter rotor based on coflow jet[J]. International Journal of Aerospace Engineering, 2022, 2022: 1–19. doi: 10.1155/2022/9299470
|
[72] |
许和勇, 马成宇. 协同射流流动控制方法研究进展综述[J]. 航空工程进展, 2022, 13(6): 1–16. DOI: 10.16615/j.cnki.1674-8190.2022.06.01
XU H Y, MA C Y. Review of the Co-flow jet flow control method[J]. Advances in Aeronautical Science and Engineering, 2022, 13(6): 1–16. doi: 10.16615/j.cnki.1674-8190.2022.06.01
|
[73] |
张野平, 侯银珠, 汪发亮. 飞行器绕流介质阻挡放电等离子体流动控制技术综述[J]. 航空科学技术, 2016, 27(6): 5–10.
ZHANG Y P, HOU Y Z, WANG F L. Brief introduction of DBD plasma flow control in aircraft design[J]. Aeronautical Science & Technology, 2016, 27(6): 5–10.
|
[74] |
LI G Q, YI S H. Large eddy simulation of dynamic stall flow control for wind turbine airfoil using plasma actuator[J]. Energy, 2020, 212: 118753. doi: 10.1016/j.energy.2020.118753
|
[75] |
LI G Q, ZHANG W G, JIANG Y B. Experimental investigation of dynamic stall flow control for wind turbine airfoils using a plasma actuator[J]. Energy, 2019, 185: 90–101. doi: 10.1016/j.energy.2019.07.017
|
[76] |
ZHANG X, CUI Y D, LI H X. Acoustic streaming flow generated by surface dielectric barrier discharge in quiescent air[J]. Physics of Fluids, 2021, 33(5): 057117. doi: 10.1063/5.0049420
|
[77] |
李国强, 常智强, 张鑫, 等. 翼型动态失速等离子体流动控制试验[J]. 航空学报, 2018, 39(8): 123–135. DOI: 10.7527/S1000-6893.2018.22111
LI G Q, CHANG Z Q, ZHANG X, et al. Experiment on flow control of airfoil dynamic stall using plasma actuator[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(8): 123–135. doi: 10.7527/S1000-6893.2018.22111
|
[78] |
MANOJ KUMAR V, WANG C C. Active flow control of flapping airfoil using openfoam[J]. Journal of Mechanics, 2020, 36(3): 361–372. doi: 10.1017/jmech.2019.46
|
[79] |
CLIFFORD C J, SINGHAL A, SAMIMY M. A study of physics and control of a flow over an airfoil in fully-reverse condition[C]//Proc of the 52nd Aerospace Sciences Meeting. 2014: 1265. doi: 10.2514/6.2014-1265
|
[80] |
SOSA R, MOREAU E, TOUCHARD G, et al. Stall control at high angle of attack with periodically excited EHD actuators[C]//Proc of the 35th AIAA Plasmadynamics and Lasers Conference. 2004: 2738. doi: 10.2514/6.2004-2738
|
[81] |
POST M L, CORKE T C. Separation control using plasma actuators: dynamic stall vortex control on oscillating airfoil[J]. AIAA Journal, 2006, 44(12): 3125–3135. doi: 10.2514/1.22716
|
[82] |
YANG H S, LIANG H, ZHAO G Y, et al. Experimental study on dynamic stall control based on AC-DBD actuation[J]. Plasma Science and Technology, 2021, 23(11): 115502. doi: 10.1088/2058-6272/ac1395
|
[83] |
YANG H S, ZHAO G Y, LIANG H, et al. Dynamic stall control over an airfoil by NS-DBD actuation[J]. Chinese Physics B, 2020, 29(10): 105203. doi: 10.1088/1674-1056/abb227
|
[84] |
YU H C, ZHENG J G. Numerical investigation of control of dynamic stall over a NACA0015 airfoil using dielectric barrier discharge plasma actuators[J]. Physics of Fluids, 2020, 32(3): 035103. doi: 10.1063/1.5142465
|
[85] |
POST M L, CORKE T C. Separation control on High angle of attack airfoil using plasma actuators[J]. AIAA Journal, 2004, 42(11): 2177–2184. doi: 10.2514/1.2929
|
[86] |
GLEZER A, AMITAY M. Synthetic jets[J]. Annual Review of Fluid Mechanics, 2002, 34: 503–529. doi: 10.1146/annurev.fluid.34.090501.094913
|
[87] |
罗振兵, 夏智勋. 合成射流技术及其在流动控制中应用的进展[J]. 力学进展, 2005, 35(2): 221–234. DOI: 10.3321/j.issn:1000-0992.2005.02.009
LUO Z B, XIA Z X. Advances in synthetic jet technology and applications in flow control[J]. Advances in Mechanics, 2005, 35(2): 221–234. doi: 10.3321/j.issn:1000-0992.2005.02.009
|
[88] |
LIU R B, WEI W T, WAN H P, et al. Experimental study on airfoil flow separation control via an air-supplement plasma synthetic jet[J]. Advances in Aerodynamics, 2022, 4(1): 1–22. doi: 10.1186/s42774-022-00126-w
|
[89] |
李斌斌, 姚勇, 顾蕴松, 等. 合成射流低速射流矢量偏转控制的PIV实验研究[J]. 空气动力学学报, 2018, 36(1): 22–25,30. DOI: 10.7638/kqdlxxb-2015.0194
LI B B, YAO Y, GU Y S, et al. PIV experiments on vector deflection control of lowspeed synthetic jet[J]. Acta Aerodynamica Sinica, 2018, 36(1): 22–25,30. doi: 10.7638/kqdlxxb-2015.0194
|
[90] |
罗振兵, 夏智勋, 邓雄, 等. 合成双射流及其流动控制技术研究进展[J]. 空气动力学学报, 2017, 35(2): 252–264. DOI: 10.7638/kqdlxxb-2017.0053
LUO Z B, XIA Z X, DENG X, et al. Research progress of dual synthetic jets and its flow control technology[J]. Acta Aerodynamica Sinica, 2017, 35(2): 252–264. doi: 10.7638/kqdlxxb-2017.0053
|
[91] |
左伟, 顾蕴松, 程克明, 等. 斜出口合成射流控制机翼分离流实验研究[J]. 实验流体力学, 2014, 28(6): 45–50.
ZUO W, GU Y S, CHENG K M, et al. An experimental investigation on separation control of an airfoil by beveled-slit-synthetic-j et-actuator[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(6): 45–50.
|
[92] |
FENG J J, ZHU G J, LIN Y, et al. Control of dynamic stall of an airfoil by using synthetic jet technology[J]. Arabian Journal for Science and Engineering, 2020, 45(11): 9835–9841. doi: 10.1007/s13369-020-04954-0
|
[93] |
ZHAO Q J, MA Y Y, ZHAO G Q. Parametric analyses on dynamic stall control of rotor airfoil via synthetic jet[J]. Chinese Journal of Aeronautics, 2017, 30(6): 1818–1834. doi: 10.1016/j.cja.2017.08.011
|
[94] |
AMITAY M, SMITH D R, KIBENS V, et al. Aerodynamic flow control over an unconventional airfoil using synthetic jet actuators[J]. AIAA Journal, 2001, 39(3): 361–370. doi: 10.2514/2.1323
|
[95] |
TOUSI N M, COMA M, BERGADÀ J M, et al. Active flow control optimisation on SD7003 airfoil at pre and post-stall angles of attack using synthetic jets[J]. Applied Mathematical Modelling, 2021, 98: 435–464. doi: 10.1016/j.apm.2021.05.016
|
[96] |
MA Y Y, ZHAO Q J, CHEN X, et al. Experimental analyses of synthetic jet control effects on aerodynamic characteristics of helicopter rotor[J]. The Aeronautical Journal, 2020, 124(1274): 597–616. doi: 10.1017/aer.2019.163
|
[97] |
ZHAO G Q, ZHAO Q J. Parametric analyses for synthetic jet control on separation and stall over rotor airfoil[J]. Chinese Journal of Aeronautics, 2014, 27(5): 1051–1061. doi: 10.1016/j.cja.2014.03.023
|
[98] |
DUVIGNEAU R, HAY A, VISONNEAU M. Optimal location of a synthetic jet on an airfoil for stall control[J]. Journal of Fluids Engineering, 2007, 129(7): 825–833. doi: 10.1115/1.2742729
|
[99] |
史勇杰, 厉聪聪, 徐国华. 基于合成射流的旋翼翼型动态失速控制研究[J]. 南京航空航天大学学报, 2020, 52(2): 270–279. DOI: 10.16356/j.1005-2615.2020.02.013
SHI Y J, LI C C, XU G H. Rotor airfoil dynamic stall control based on synthetic jet[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2020, 52(2): 270–279. doi: 10.16356/j.1005-2615.2020.02.013
|
[100] |
胡智. 翼型失速特性与合成射流流动控制研究[D]. 上海: 上海交通大学, 2017: 57.
HU Z. Study on stall characteristics of airfoil and flow control of synthetic jet[D]. Shanghai: Shanghai Jiao Tong University, 2017: 57.
|
[101] |
KIM J, PARK Y M, LEE J, et al. Numerical investigation of jet angle effect on airfoil stall control[J]. Applied Sciences, 2019, 9(15): 2960. doi: 10.3390/app9152960
|
[102] |
林彦良, 刘艳明, 李智慧. 不同孔口构型合成射流激励器的低速翼型分离控制特性[J]. 中国科技论文, 2013, 8(11): 1173–1178. DOI: 10.3969/j.issn.2095-2783.2013.11.022
LIN Y L, LIU Y M, LI Z H. Separation control characteristics of different configurations of orifice synthetic jet actuators used in low-speed airfoil[J]. Sciencepaper Online, 2013, 8(11): 1173–1178. doi: 10.3969/j.issn.2095-2783.2013.11.022
|
[103] |
LEE B, KIM M, CHOI B, et al. Closed-loop active flow control of stall separation using synthetic jets[C]//Proc of the 31st AIAA Applied Aerodynamics Conference. 2013: 2925. doi: 10.2514/6.2013-2925
|
[104] |
罗振兵. 合成射流/合成双射流机理及其在射流矢量控制和微泵中的应用研究[D]. 长沙: 国防科学技术大学, 2006: 176-177.
LUO Z B. Principle of synthetic jet and dual synthetic jets, and their applications in jet vectoring and micro-pump[D]. Changsha: National University of Defense Technology, 2006: 176-177.
|
[105] |
WANG P L, LIU Q S, LI C, et al. Effect of trailing edge dual synthesis jets actuator on aerodynamic characteristics of a straight-bladed vertical axis wind turbine[J]. Energy, 2022, 238: 121792. doi: 10.1016/j.energy.2021.121792
|
[106] |
戴昱, 陈德龙, 信志强. 基于流固耦合的柔性翼型动态失速特性研究[J]. 河南科学, 2022, 40(1): 25–32.
DAI Y, CHEN D L, XIN Z Q. Study on dynamic stall characteristics of the flexible airfoil based on fluid-structure interaction[J]. Henan Science, 2022, 40(1): 25–32.
|
[107] |
JACOBELLIS G, GANDHI F, RICE T T, et al. Computational and experimental investigation of camber-morphing airfoils for reverse flow drag reduction on high-speed rotorcraft[J]. Journal of the American Helicopter Society, 2020, 65(1): 1–14. doi: 10.4050/jahs.65.012001
|
[108] |
RICE T T, KO D, AMITAY M. Control of reversed flow in static and dynamic conditions using camber morphing airfoils[C]//Proc of the AIAA Aviation 2019 Forum. 2019: 3213. doi: 10.2514/6.2019-3213
|
[109] |
欧阳炎, 寇西平, 郭洪涛, 等. 带连续变弯度后缘操纵面机翼的动态失速减缓[J]. 航空工程进展, 2021, 12(6): 39–49. DOI: 10.16615/j.cnki.1674-8190.2021.06.04
OUYANG Y, KOU X P, GUO H T, et al. Alleviation of dynamic stall moments by morphing flap[J]. Advances in Aeronautical Science and Engineering, 2021, 12(6): 39–49. doi: 10.16615/j.cnki.1674-8190.2021.06.04
|
[110] |
KO D, GUHA T K, AMITAY M. Control of reverse flow over a cantilevered blade using passive camber morphing[J]. AIAA Journal, 2021, 59(12): 5310–5331. doi: 10.2514/1.j060229
|
[111] |
NELSON C, GUHA T K, AMITAY M. Control of reverse flow over a cantilevered swept blade using passive camber morphing[C]//Proc of the AIAA SCITECH 2022 Forum. 2022. doi: 10.2514/6.2022-0475
|
[112] |
MA Y Y, ZHAO Q J, ZHAO G Q. New combinational active control strategy for improving aerodynamic characteristics of airfoil and rotor[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2020, 234(4): 977–996. doi: 10.1177/0954410019893193
|
[113] |
DAI X Y, QIU Z, LI G H, et al. Research on dynamic stall active control of two-dimensional airfoil with combination of droop leading edge and trailing edge flap[J]. Aerospace Systems, 2022, 5(4): 643–653. doi: 10.1007/s42401-022-00159-5
|
[114] |
PATERAS P R. Screw propeller of helicopter flying machines: US1449129[P/OL]. 1923-03-20[2023-04-13]. https://www.freepatentsonline.com/1449129.pdf.
|
[115] |
陆洋. 电控旋翼—一种新概念旋翼系统[J]. 航空科学技术, 2007, 18(6): 12–16. DOI: 10.3969/j.issn.1007-5453.2007.06.003
LU Y. Electrically controlled rotor—a new concept rotor system[J]. Aeronautical Science and Technology, 2007, 18(6): 12–16. doi: 10.3969/j.issn.1007-5453.2007.06.003
|
[116] |
HALL S R, ANAND R V, STRAUB F K, et al. Active flap control of the SMART rotor for vibration reduction[C]//Proc of the American Helicopter Society 65th annual forum and technology display. 2009.
|
[117] |
KRZYSIAK A, NARKIEWICZ J. Aerodynamic loads on airfoil with trailing-edge flap pitching with different frequencies[J]. Journal of Aircraft, 2006, 43(2): 407–418. doi: 10.2514/1.15597
|
[118] |
GERONTAKOS P, LEE T. Trailing-edge flap control of dynamic pitching moment[J]. AIAA Journal, 2007, 45(7): 1688–1694. doi: 10.2514/1.27577
|
[119] |
LEE T, SU Y Y. Unsteady airfoil with a harmonically deflected trailing-edge flap[J]. Journal of Fluids and Structures, 2011, 27(8): 1411–1424. doi: 10.1016/j.jfluidstructs.2011.06.008
|
[120] |
王进, 杨茂, 陈凤明. 带后缘襟翼翼型的非定常气动特性数值仿真[J]. 计算机仿真, 2011, 28(2): 88–92. DOI: 10.3969/j.issn.1006-9348.2011.02.022
WANG J, YANG M, CHEN F M. CFD simulation of unsteady aerodynamics of airfoil with trailing-edge flap[J]. Computer Simulation, 2011, 28(2): 88–92. doi: 10.3969/j.issn.1006-9348.2011.02.022
|
[121] |
马奕扬, 招启军, 赵国庆. 基于后缘小翼的旋翼翼型动态失速控制分析[J]. 航空学报, 2017, 38(3): 127–137. DOI: 10.7527/S1000-6893.2016.0220
MA Y Y, ZHAO Q J, ZHAO G Q. Dynamic stall control of rotor airfoil via trailing-edge flap[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(3): 127–137. doi: 10.7527/S1000-6893.2016.0220
|
[122] |
马奕扬, 招启军. 后缘小翼对旋翼气动特性的控制机理及参数分析[J]. 航空学报, 2018, 39(5): 14–27. DOI: 10.7527/S1000-6893.2018.21671
MA Y Y, ZHAO Q J. Control mechanism and parameter analyses of aerodynamic characteristics of rotor via trailing-edge flap[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5): 14–27. doi: 10.7527/S1000-6893.2018.21671
|
[123] |
胡志远, 徐国华, 史勇杰. 基于CFD方法的主动襟翼控制旋翼翼型涡特性研究[J]. 南京航空航天大学学报, 2018, 50(2): 167–172. DOI: 10.16356/j.1005-2615.2018.02.003
HU Z Y, XU G H, SHI Y J. Study of AFC rotor airfoil vortex characteristics based on CFD method[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2018, 50(2): 167–172. doi: 10.16356/j.1005-2615.2018.02.003
|
[124] |
BARRIO J F, MERTENS C, RAGNI D, et al. Pressure based active load control of a blade in dynamic stall conditions[J]. Journal of Physics: Conference Series, 2020, 1618(2): 022003. doi: 10.1088/1742-6596/1618/2/022003
|
[125] |
SAMARA F, JOHNSON D A. Deep dynamic stall and active aerodynamic modification on a S833 airfoil using pitching trailing edge flap[J]. Wind Engineering, 2020, 00(0): 1–20. doi: 10.1177/0309524X209388
|
[126] |
刘洋, 向锦武. 后缘襟翼对直升机旋翼翼型动态失速特性的影响[J]. 航空学报, 2013, 34(5): 1028–1035. DOI: 10.7527/S1000-6893.2013.0112
LIU Y, XIANG J W. Effect of the trailing edge flap on dynamic stall performance of helicopter rotor airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(5): 1028–1035. doi: 10.7527/S1000-6893.2013.0112
|
[127] |
KAN Z, LI D C, XIANG J W, et al. Delaying stall of morphing wing by periodic trailing-edge deflection[J]. Chinese Journal of Aeronautics, 2020, 33(2): 493–500. doi: 10.1016/j.cja.2019.09.028
|
[128] |
WOODS B K S, FRISWELL M I. Preliminary investigation of a fishbone active camber concept[C]//Proceedings of ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. 2013: 555-563. doi: 10.1115/SMASIS2012-8058
|
[129] |
KUMAR S, KOMP D, HAJEK M, et al. Integrated rotor performance improvement and vibration reduction using active camber morphing[C]//ASME 2019 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. 2019. doi: 10.1115/SMASIS2019-5588
|
[130] |
RIVERO A E, FOURNIER S, MANOLESOS M, et al. Experimental aerodynamic comparison of active camber morphing and trailing-edge flaps[J]. AIAA Journal, 2021, 59(7): 2627–2640. doi: 10.2514/1.j059606
|
[131] |
POHL J E, RADESPIEL R, HERRMANN B, et al. Gust mitigation through closed-loop control. I. Trailing-edge flap response[J]. Physical Review Fluids, 2022, 7(2): 024705. doi: 10.1103/physrevfluids.7.024705
|
[1] | QIU Zihao, LI Ziyan, ZHOU Kaiwen, WANG Shiqi, LIU Yingzheng, WEN Xin. Sweeping jet control mechanism and its application in flapless flight control[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(4): 116-125. DOI: 10.11729/syltlx20230045 |
[2] | HUANG Yijun, GONG Xu’an, MA Xingyu, JIANG Nan. Experimental study on the thickness dependence of bionics coverts for the wing stall control[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(4): 105-115. DOI: 10.11729/syltlx20230028 |
[3] | CHEN Wenli, LIN Longhan, DENG Zhi, GAO Donglai. Passive control on flow past a circular cylinder with bionic nylon wires[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(4): 66-75. DOI: 10.11729/syltlx20230019 |
[4] | WANG Yi, GU Yunsong, ZHOU Yuhang, SHI Nanxing. The linear control characteristic of the multi-wall passive fluidic thrust vectoring nozzle[J]. Journal of Experiments in Fluid Mechanics. DOI: 10.11729/syltlx20230120 |
[5] | YAO Zhangyi, SHI Zhiwei, DONG Yizhang. Deep reinforcement learning for the control of airfoil flow separation[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(3): 55-64. DOI: 10.11729/syltlx20210085 |
[6] | YU Baiyang, LYU Hongqiang, ZHOU Yan, LUO Zhenbing, LIU Xuejun. Predictive analysis of flow control in high-speed complex flow field based on machine learning[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(3): 44-54. DOI: 10.11729/syltlx20210168 |
[7] | MU Kai, SI Ting. Experimental method and process control of capillary flow focusing[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(2): 46-56. DOI: 10.11729/syltlx20190146 |
[8] | Hu Buyuan, Huang Yong, Zhang Guichuan, Zhang Rongping. Internal mass flow control technology of low speed TPS tests[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(6): 54-58. DOI: 10.11729/syltlx20180201 |
[9] | Sun Jian, Niu Zhongguo, Liu Rubing, Lin Qi. The wind tunnel test of the active flow control on the flying wing model based on the plasma synthetic jet[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(4): 81-88. DOI: 10.11729/syltlx20190041 |
[10] | LI Jun, LI Tian, ZHANG Qun-feng. The mechanism and control of an open cavity flow[J]. Journal of Experiments in Fluid Mechanics, 2008, 22(1): 80-83. DOI: 10.3969/j.issn.1672-9897.2008.01.017 |
1. |
李杰,杨钊,段卓毅,张恒,赵帅. 涡桨飞机发展现状及关键气动问题. 航空学报. 2019(04): 76-86 .
![]() | |
2. |
陈波,缪涛,马率,耿建中,江雄. 螺旋桨飞机俯仰力矩特性改进方法. 航空学报. 2019(04): 99-110 .
![]() |