Citation: | YAO Z Y,SHI Z W,DONG Y Z. Deep reinforcement learning for the control of airfoil flow separation[J]. Journal of Experiments in Fluid Mechanics, 2022,36(3):55-64.. DOI: 10.11729/syltlx20210085 |
[1] |
SUTTON R S. Learning to predict by the methods of temporal differences[J]. Machine Learning,1988,3(1):9-44. doi: 10.1007/BF00115009
|
[2] |
FRANCOIS-LAVET V,HENDERSON P,ISLAM R,et al. An introduction to deep reinforcement learning[J]. Founda-tions and Trends in Machine Learning,2018:219-354. doi: 10.1561/2200000071
|
[3] |
GOODFELLOW I, BENGIO Y, COURVILLE A. 深度学习[M]. 赵申剑, 黎彧君, 符天凡, 等译. 北京: 人民邮电出版社, 2017.
|
[4] |
PINTO L,ANDRYCHOWICZ M,WELINDER P,et al. Asymmetric actor critic for image-based robot learning[J]. Computer Science,2017:1-8. doi: 10.15607/RSS.2018.XIV.008
|
[5] |
BAHDANAU D, BRAKEL P, XU K, et al. An actor-critic algorithm for structured prediction[EB/OL]. [2021-08-24]. https://arxiv.org/abs/1607.07086v2.
|
[6] |
MNIH V,KAVUKCUOGLU K,SILVER D,et al. Playing Atari with deep reinforcement learning[J]. Computer Scien-ce,2013:1-9.
|
[7] |
SILVER D,SCHRITTWIESER J,SIMONYAN K,et al. Mastering the game of Go without human knowledge[J]. Nature,2017,550(7676):354-359. doi: 10.1038/nature24270
|
[8] |
BERNER C, BROCKMAN G, CHAN B, et al. Dota 2 with large scale deep reinforcement learning[EB/OL]. [2021-08-24]. https://arxiv.org/abs/1912.06680v1.
|
[9] |
THE ALPHASTAR TEAM. AlphaStar: Mastering the real-time strategy game StarCraft II[EB/OL]. [2021-08-24]. https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii.
|
[10] |
BROWN N,SANDHOLM T. Superhuman AI for multi-player Poker[J]. Science,2019,365(6456):885-890. doi: 10.1126/science.aay2400
|
[11] |
KENDALL A, HAWKE J, JANZ D, et al. Learning to drive in a day[C]//Proc of the 2019 International Conference on Robotics and Automation(ICRA). 2019.
|
[12] |
BEWLEY A, RIGLEY J, LIU Y X, et al. Learning to drive from simulation without real world labels[C]//Proc of the 2019 International Conference on Robotics and Automation(ICRA), 2019. doi: 10.1109/ICRA.2019.8793668
|
[13] |
KNIGHT W. Google just gave control over data center cooling to an AI [EB/OL]. [2021-08-24]. https://www.technologyreview.com/s/611902/google-just-gave-control-over-data-center-cooling-to-an-ai.
|
[14] |
CHNG T L,RACHMAN A,TSAI H M,et al. Flow control of an airfoil via injection and suction[J]. Journal of Aircraft,2009,46(1):291-300. doi: 10.2514/1.38394
|
[15] |
COIRO D P,BELLOBUONO E F,NICOLOSI F,et al. Improving aircraft endurance through turbulent separation control by pulsed blowing[J]. Journal of Aircraft,2008,45(3):990-1001. doi: 10.2514/1.33268
|
[16] |
VERMA S,NOVATI G,KOUMOUTSAKOS P. Efficient collective swimming by harnessing vortices through deep reinforcement learning[J]. Proceedings of the National Academy of Sciences of the United States of America,2018,115(23):5849-5854. doi: 10.1073/pnas.1800923115
|
[17] |
SHIMOMURA S, SEKIMOTO S, FUKUMOTO H, et al. Preliminary experimental study on closed-loop flow separa-tion control utilizing deep Q-network over fixed angle-of-attack airfoil[C]//Proc of the 2018 Flow Control Conference. 2018. doi: 10.2514/6.2018-3522
|
[18] |
GUÉNIAT F,MATHELIN L,HUSSAINI M Y. A statistical learning strategy for closed-loop control of fluid flows[J]. Theoretical and Computational Fluid Dynamics,2016,30(6):497-510. doi: 10.1007/s00162-016-0392-y
|
[19] |
PIVOT C, CORDIER L, MATHELIN L. A continuous reinforcement learning strategy for closed-loop control in fluid dynamics[C]//Proc of the 35th AIAA Applied Aero-dynamics Conference. 2017. doi: 10.2514/6.2017-3566
|
[20] |
XU H,ZHANG W,DENG J,et al. Active flow control with rotating cylinders by an artificial neural network trained by deep reinforcement learning[J]. Journal of Hydrodynamics,2020,32(2):254-258. doi: 10.1007/s42241-020-0027-z
|
[21] |
RABAULT J,KUCHTA M,JENSEN A,et al. Artificial neural networks trained through deep reinforcement learning discover control strategies for active flow control[J]. Journal of Fluid Mechanics,2019,865:281-302. doi: 10.1017/jfm.2019.62
|
[22] |
TANG H W,RABAULT J,KUHNLE A,et al. Robust active flow control over a range of Reynolds numbers using an artificial neural network trained through deep reinforce-ment learning[J]. Physics of Fluids,2020,32(5):053605. doi: 10.1063/5.0006492
|
[23] |
FUJIMOTO S, VAN HOOF H, MEGER D. Addressing function approximation error in actor-critic methods[EB/OL]. [2021-08-24]. https://arxiv.org/abs/1802.09477 2018: arXiv:1802.09477[cs.AI].
|
1. |
张鑫,王勋年. 正弦交流介质阻挡放电等离子体激励器诱导流场研究的进展与展望. 力学学报. 2023(02): 285-298 .
![]() | |
2. |
陈杰,宗豪华,宋慧敏,梁华,刘诗敏,方子淇. 等离子体电磁干扰下圆柱绕流壁面压力信号AI实时降噪. 实验流体力学. 2023(04): 59-65 .
![]() | |
3. |
张进,周雷,曹博超. 强化学习方法在翼型拍动实验中的应用. 空气动力学学报. 2023(09): 20-29 .
![]() |