Citation: | YU B Y,LYU H Q,ZHOU Y,et al. Predictive analysis of flow control in high-speed complex flow field based on machine learning[J]. Journal of Experiments in Fluid Mechanics, 2022,36(3):44-54.. DOI: 10.11729/syltlx20210168 |
[1] |
BEN-GIDA H,STEFANINI J,STALNOV O,et al. Application of passive flow control techniques to attenuate the unsteady near wake of airborne turrets in subsonic flow[J]. Aerospace Science and Technology,2021,119:107129. doi: 10.1016/J.AST.2021.107129
|
[2] |
战培国,程娅红,赵昕. 主动流动控制技术研究[J]. 航空科学技术,2010,21(5):2-6. DOI: 10.3969/j.issn.1007-5453.2010.05.001
ZHAN P G,CHENG Y H,ZHAO X. A review of active flow control technology[J]. Aeronautical Science and Technology,2010,21(5):2-6. doi: 10.3969/j.issn.1007-5453.2010.05.001
|
[3] |
王林,罗振兵,夏智勋,等. 高速流场主动流动控制激励器研究进展[J]. 中国科学(技术科学),2012,42(10):1103-1119. DOI: 10.1360/ze2012-42-10-1103
WANG L,LUO Z B,XIA Z X,et al. Review of actuators for high speed active flow control[J]. SCIENTIA SINICA Technologica,2012,42(10):1103-1119. doi: 10.1360/ze2012-42-10-1103
|
[4] |
BISHOP C . Pattern recognition and machine learning[M]. Germany: Springer, 2006.
|
[5] |
MINELLI G,DONG T,NOACK B R,et al. Upstream actuation for bluff-body wake control driven by a genetically inspired optimization[J]. Journal of Fluid Mechanics,2020,893:A1. doi: 10.1017/JFM.2020.220
|
[6] |
REN F,RABAULT J,TANG H. Applying deep reinforce-ment learning to active flow control in weakly turbulent conditions[J]. Physics of Fluids,2021,33(3):037121. doi: 10.1063/5.0037371
|
[7] |
RABAULT J,KUCHTA M,JENSEN A,et al. Artificial neural networks trained through deep reinforcement learning discover control strategies for active flow control[J]. Journal of Fluid Mechanics,2019,865:281-302. doi: 10.1017/JFM.2019.62
|
[8] |
侯宏,杨建华. RBF网络用于边界层转捩中抽吸流优化控制[J]. 航空学报,2002,23(6):556-559. DOI: 10.3321/j.issn:1000-6893.2002.06.003
HOU H,YANG J H. Plant identification in active control of laminar boundary-layer transition by suction using RBF neural network[J]. Acta Aeronautica ET Astronautica Sinica,2002,23(6):556-559. doi: 10.3321/j.issn:1000-6893.2002.06.003
|
[9] |
卢俊峰, 龚小庆. 统计学[M]. 杭州: 浙江工商大学出版社, 2020.
|
[10] |
罗亦泳,姚宜斌,张立亭,等. 基于高斯过程的GPS高程转换模型[J]. 测绘通报,2015(11):11-14,59.
LUO Y Y,YAO Y B,ZHANG L T,ET AL. GPS height transformation model based on Gaussian process[J]. Bulletin of Surveying and Mapping,2015(11):11-14,59.
|
[11] |
罗亦泳. 基于高斯过程的大坝变形预测模型[J]. 浙江工业大学学报,2016,44(5):543-546. DOI: 10.3969/j.issn.1006-4303.2016.05.015
LUO Y Y. A Gaussian process based model for predicting deformations of dams[J]. Journal of Zhejiang University of Technology,2016,44(5):543-546. doi: 10.3969/j.issn.1006-4303.2016.05.015
|
[12] |
孙斌,姚海涛,刘婷. 基于高斯过程回归的短期风速预测[J]. 中国电机工程学报,2012,32(29):104-109,5.
SUN B,YAO H T,LIU T. Short-term wind speed forecasting based on gaussian process regression model[J]. Proceedings of the CSEE,2012,32(29):104-109,5.
|
[13] |
张韶辉,苏强,赵永亮,等. 基于LASSO回归对冠心病相关血脂指标的筛选[J]. 中国综合临床,2021,37(2):148-153. DOI: 10.3760/cma.j.cn101721-20200807-00060
ZHANG S H,SU Q,ZHAO Y L,et al. Screening of lipid parameters in coronary artery disease based on Lasso regression[J]. Clinical Medicine of China,2021,37(2):148-153. doi: 10.3760/cma.j.cn101721-20200807-00060
|
[14] |
黄梅,朱焱. 基于随机森林特征重要性的K-匿名特征优选[J]. 计算机应用与软件,2020,37(3):266-270. DOI: 10.3969/j.issn.1000-386x.2020.03.045
HUANG M,ZHU Y. K-anonymity feature optimization based on the importance of random forest features[J]. Computer Applications and Software,2020,37(3):266-270. doi: 10.3969/j.issn.1000-386x.2020.03.045
|
[15] |
刘鑫童. 深度卷积神经网络在甲状腺超声图像中的分类研究[D]. 银川: 宁夏大学, 2018.
LIU X T. Classification of deep convolution neural networks in thyroid ultrasound images[D]. Yinchuan: Ningxia Univer- sity, 2018.
|
[16] |
SUN L,AN W,LIU X J,et al. On developing data-driven turbulence model for DG solution of RANS[J]. Chinese Journal of Aeronautics,2019,32(8):1869-1884. doi: 10.1016/J.CJA.2019.04.004
|
[17] |
胡伟杰,黄增辉,刘学军,等. 基于自动核构造高斯过程的导弹气动性能预测[J]. 航空学报,2021,42(4):289-302.
HU W J,HUANG Z H,LIU X J,et al. Missile aerodynamic performance prediction of Gaussian process through auto-matic kernel construction[J]. Acta Aeronautica ET Astro-nautica Sinica,2021,42(4):289-302.
|
[18] |
高赫,刘学军,郭晋,等. 基于高斯过程回归的连续式风洞马赫数控制[J]. 空气动力学学报,2019,37(3):480-487. DOI: 10.7638/kqdlxxb-2019.0018F
GAO H,LIU X J,GUO J,et al. Mach number control of continuous wind tunnel based on Gaussian process regre-ssion[J]. Acta Aerodynamica Sinica,2019,37(3):480-487. doi: 10.7638/kqdlxxb-2019.0018F
|
[19] |
NEMATZADEH Z, IBRAHIM R, SELAMAT A. Compa-rative studies on breast cancer classifications with k-fold cross validations using machine learning techniques[C]//Proc of the 2015 10th Asian control conference (ASCC). IEEE, 2015: 1-6. doi: 10.1109/ASCC.2015.7244654
|
[20] |
宗豪华,吴云,宋慧敏,等. 等离子体合成射流的理论模型与重频激励特性[J]. 航空学报,2015,36(6):1762-1774.
ZONG H H,WU Y,SONG H M,et al. Analytical model and repetitive working characteristics of plasma synthetic jet[J]. Acta Aeronautica ET Astronautica Sinica,2015,36(6):1762-1774.
|
[21] |
李铮, 史志伟, 魏晨瑶, 等. 高超声速流场中等离子体合成射流激励器逆向喷流激波控制研究[C]//第十届全国流体力学学术会议论文摘要集. 2018.
|
[22] |
PRESS M. Approximation methods for Gaussian process regression[J]. MIT Press,2007,14(2):333-350.
|
[23] |
王林,夏智勋,罗振兵,等. 两电极等离子体合成射流激励器工作特性研究[J]. 物理学报,2014,63(19):194702. DOI: 10.7498/aps.63.194702
WANG L,XIA Z X,LUO Z B,et al. Experimental study on the characteristics of a two-electrode plasma synthetic jet actuator[J]. Acta Physica Sinica,2014,63(19):194702. doi: 10.7498/aps.63.194702
|
[24] |
姜慧,邵涛,章程,等. 不同电极间距下纳秒脉冲表面介质阻挡放电分布特性[J]. 电工技术学报,2017,32(2):33-42.
JIANG H,SHAO T,ZHANG C,et al. Distribution cha-racteristics of nanosecond-pulsed surface dielectric barrier discharge at different electrode gaps[J]. Transactions of China Electrotechnical Society,2017,32(2):33-42.
|
[25] |
王林,罗振兵,夏智勋,等. 三电极等离子体合成射流激励器工作特性参数影响实验[J]. 气体物理,2017,2(6):1-8.
WANG L,LUO Z B,XIA Z X,et al. Experimental study of the parameters influence on flow characteristic of the three-electrode plasma synthetic jet actuator[J]. Physics of Gases,2017,2(6):1-8.
|
[26] |
RASMUSSEN C E, WILLIAMS C K I. Gaussian processes for machine learning[M]. America: the MIT press, 2005. doi: 10.7551/MITPRESS/3206.001.0001
|
[27] |
徐冲,刘保国,刘开云,等. 基于组合核函数的高斯过程边坡角智能设计[J]. 岩土力学,2010,31(3):821-826. DOI: 10.3969/j.issn.1000-7598.2010.03.028
XU C,LIU B G,LIU K Y,et al. Slope angle intelligent design based on gaussian process with combinatorial kernel function[J]. Rock and Soil Mechanics,2010,31(3):821-826. doi: 10.3969/j.issn.1000-7598.2010.03.028
|
[28] |
王娟,慈林林,姚康泽. 特征选择方法综述[J]. 计算机工程与科学,2005,27(12):68-71. DOI: 10.3969/j.issn.1007-130X.2005.12.024
WANG J,CI L L,YAO K Z. A survey of feature selection[J]. Computer Engineering and Science,2005,27(12):68-71. doi: 10.3969/j.issn.1007-130X.2005.12.024
|
[29] |
刘晓宁. 基于LASSO特征选择的方法比较[J]. 安徽电子信息职业技术学院学报,2014,13(1):26-30. DOI: 10.3969/j.issn.1671-802X.2014.01.009
LIU X N. Comparison of feature selection methods based on lasso[J]. Journal of Anhui Vocational College of Electronics & Information Technology,2014,13(1):26-30. doi: 10.3969/j.issn.1671-802X.2014.01.009
|
[30] |
李欣海. 随机森林模型在分类与回归分析中的应用[J]. 应用昆虫学报,2013,50(4):1190-1197. DOI: 10.7679/j.issn.2095-1353.2013.163
LI X H. Using “random forest” for classification and regression[J]. Chinese Journal of Applied Entomology,2013,50(4):1190-1197. doi: 10.7679/j.issn.2095-1353.2013.163
|
[31] |
徐鹏,林森. 基于C4.5决策树的流量分类方法[J]. 软件学报,2009,20(10):2692-2704. DOI: 10.3724/SP.J.1001.2009.03444
XU P,LIN S. Internet traffic classification using C4.5 decision tree[J]. Journal of Software,2009,20(10):2692-2704. doi: 10.3724/SP.J.1001.2009.03444
|
[32] |
BENESTY J, CHEN J D, HUANG Y T, et al. Pearson correlation coefficient[M]//Noise reduction in speech pro-cessing. Berlin Heidelberg: Springer Berlin Heidelberg, 2009: 1-4. doi: 10.1007/978-3-642-00296-0_5
|