Citation: | YU X N, JIANG X T, ZHANG J, et al. Application of typical magnetic suspension system in maglev flight wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(3): 27-36. DOI: 10.11729/syltlx20220149 |
[1] |
倪章松, 张军, 符澄, 等. 磁浮飞行风洞试验技术及应用需求分析[J]. 空气动力学学报, 2021, 39(5): 95–110. DOI: 10.7638/kqdlxxb-2021.0206
NI Z S, ZHANG J, FU C, et al. Analyses of the test techniques and applications of maglev flight tunnels[J]. Acta Aerodynamica Sinica, 2021, 39(5): 95–110. doi: 10.7638/kqdlxxb-2021.0206
|
[2] |
MNICH P. 德国和日本磁悬浮高速铁路系统的现状和比较[J]. 王渤洪, 译. 变流技术与电力牵引, 2001(6): 1–8. doi: 10.13889/j.issn.2095-3631.2001.06.001
|
[3] |
舒光伟, Reinhold Meisinger. 德国电磁型磁浮列车40年回顾[J]. 上海应用技术学院学报(自然科学版), 2012, 12(4): 305–309.
SHU G W, MEISINGER R. Review of German EMS maglev vehicles in the past 40 years[J]. Journal of Shanghai Institute of Technology (Natural Science), 2012, 12(4): 305–309.
|
[4] |
大槻久夫. 日本超导磁悬浮铁路开发的现状[J]. 易厚梅, 译. 变流技术与电力牵引, 2002(3): 5–7. doi: 10.13889/j.issn.2095-3631.2002.03.002
|
[5] |
蓝建中. 日本超导磁浮列车时速创纪录[J]. 城市轨道交通研究, 2015, 18(5): 134.
|
[6] |
张瑞华, 刘育红, 徐善纲. 美国Magplane磁悬浮列车方案介绍[J]. 变流技术与电力牵引, 2005(5): 40–43. doi: 10.13889/j.issn.2095-3631.2005.05.009
|
[7] |
POST R F. Toward more efficient transport: the inductrack maglev system[EB/OL]. [2021-11-25]. https://gcep.stanford.edu/pdfs/ChEHeXOTnf3dHH5qjYRXMA/09_Post_10_11_trans.pdf.
|
[8] |
张旭东. 我国将在2020年研制出时速600公里高速磁浮样车[J]. 广东交通, 2018(1): 46.
|
[9] |
邓自刚, 刘宗鑫, 李海涛, 等. 磁悬浮列车发展现状与展望[J]. 西南交通大学学报, 2022, 57(3): 455–474, 530. DOI: 10.3969/j.issn.0258-2724.20220001
DENG Z G, LIU Z X, LI H T, et al. Development status and prospect of maglev train[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 455–474, 530. doi: 10.3969/j.issn.0258-2724.20220001
|
[10] |
GOU J S. Development status and global competition trends analysis of maglev transportation technology based on patent data[J]. Urban Rail Transit, 2018, 4(3): 117–129. doi: 10.1007/s40864-018-0087-3
|
[11] |
JACOBS W A. Magnetic launch assist-NASA’s vision for the future[J]. IEEE Transactions on Magnetics, 2001, 37(1): 55–57. doi: 10.1109/20.911790
|
[12] |
POWELL J, MAISE G, RATHER J. Maglev launch: ultra-low cost, ultra-high volume access to space for cargo and humans[J]. American Institute of Physics Conference Proceedings, 2010, 1208(1): 121–136. doi: 10.1063/1.3326240
|
[13] |
POWELL J, MAISE G, PANIAGUA J, et al. Maglev launch and the next race to space[C]//Proc of the 2008 IEEE Aerospace Conference. 2008: 1-20. doi: 10.1109/AERO.2008.4526501
|
[14] |
RANDAHL J J. 633 mph-nothing to mach [EB/OL]. [2016-04-20]. https://www.aerotechnews.com/blog/2016/04/20/ 633-mph-nothing-to-mach/.
|
[15] |
马伟明, 鲁军勇. 电磁发射技术[J]. 国防科技大学学报, 2016, 38(6): 1–5. DOI: 10.11887/j.cn.201606001
MA W M, LU J Y. Electromagnetic launch technology[J]. Journal of National University of Defense Technology, 2016, 38(6): 1–5. doi: 10.11887/j.cn.201606001
|
[16] |
王延斌. 世界首个电磁橇设施运行, 磁悬浮速度突破1000公里/小时[EB/OL]. [2022-10-21]. https://m.gmw.cn/baijia/2022-10/21/1303175289.html.
|
[17] |
战培国, 杨炯. 国外风洞试验的新机制、新概念、新技术[J]. 流体力学实验与测量, 2004, 18(4): 1–6. DOI: 10.3969/j.issn.1672-9897.2004.04.001
ZHAN P G, YANG J. New systems, concepts and techni-ques in the area of foreign wind tunnel test[J]. Experiments and Measurements in Fluid Mechanics, 2004, 18(4): 1–6. doi: 10.3969/j.issn.1672-9897.2004.04.001
|
[18] |
LOFFTUS D, LUND T, ROTE D. High-lift flight tunnel[R]. NASA/CR-2000-210653, 2000.
|
[19] |
张昆仑. 高速磁浮铁路技术[M]. 北京: 中国铁道出版社, 2021.
|
[20] |
RACHMAN N F, WIRAWAN W A, PRADIPTA A, et al. Design and levitation performance above A permanent magnet in maglev train prototype[J]. IOP Conference Series: Earth and Environmental Science, 2022, 1000(1): 012002. doi: 10.1088/1755-1315/1000/1/012002
|
[21] |
苏宇锋, 叶志通, 段智勇, 等. 微型抗磁悬浮振动能量采集器结构分析与实验[J]. 机械设计与制造, 2017(10): 19–23. DOI: 10.19356/j.cnki.1001-3997.2017.10.006
SU Y F, YE Z T, DUAN Z Y, et al. Analysis and experiment of structure design for the micro-vibration energy harvester based on diamagnetic levitation[J]. Machinery Design & Manufacture, 2017(10): 19–23. doi: 10.19356/j.cnki.1001-3997.2017.10.006
|
[22] |
EARNSHAW S R. On the nature of the molecular forces which regulate the constitution of the luminiferous ether[J]. Cambridge Philosophical Society, 1848, 18(7): 97–112.
|
[23] |
高涛. 永磁磁浮轨道交通系统的悬浮系统研究与设计[D]. 赣州: 江西理工大学, 2019.
GAO T. Research and design of suspension system for permanent magnetic maglev rail transit system[D]. Ganzhou: Jiangxi University of Science and Technology, 2019.
|
[24] |
MORISHITA M, AKASHI M. Guide-effective levitation control for electromagnetic suspension systems[J]. IEEJ Transactions on Industry Applications, 1999, 119(10): 1259–1268. doi: 10.1541/ieejias.119.1259
|
[25] |
赵春发, 翟婉明. 常导电磁悬浮动态特性研究[J]. 西南交通大学学报, 2004, 39(4): 464–468.
ZHAO C F, ZHAI W M. Dynamic characteristics of electromagnetic levitation systems[J]. Journal of Southwest Jiaotong University, 2004, 39(4): 464–468.
|
[26] |
陈殷. 低速永磁电动悬浮电磁力特性研究[D]. 成都: 西南交通大学, 2015.
CHEN Y. Characteristic analysis of electromagnetic forces created by low-speed PM electrodynamic suspension[D]. Chengdu: Southwest Jiaotong University, 2015.
|
[27] |
GUTFLEISCH O, WILLARD M A, BRÜCK E, et al. Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient[J]. Advanced Materials, 2011, 23(7): 821–842. doi: 10.1002/adma.201002180
|
[28] |
刘文旭, 李文龙, 方进. 高温超导磁悬浮技术研究论述[J]. 低温与超导, 2020, 48(2): 44–49. DOI: 10.16711/j.1001-7100.2020.02.009
LIU W X, LI W L, FANG J. Review of research on high temperature maglev[J]. Superconductivity, 2020, 48(2): 44–49. doi: 10.16711/j.1001-7100.2020.02.009
|
[29] |
熊嘉阳, 邓自刚. 高速磁悬浮轨道交通研究进展[J]. 交通运输工程学报, 2021, 21(1): 177–198. DOI: 10.19818/j.cnki.1671-1637.2021.01.008
XIONG J Y, DENG Z G. Research progress of high-speed maglev rail transit[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 177–198. doi: 10.19818/j.cnki.1671-1637.2021.01.008
|
[30] |
邓自刚, 李海涛. 高温超导磁悬浮车研究进展[J]. 中国材料进展, 2017, 36(5): 329–334, 351. DOI: 10.7502/j.issn.1674-3962.2017.05.02
DENG Z G, LI H T. Recent development of high-temperature superconducting maglev[J]. Materials China, 2017, 36(5): 329–334, 351. doi: 10.7502/j.issn.1674-3962.2017.05.02
|
[31] |
王宇飞. 高速磁悬浮系统的电磁发射特性研究[D]. 北京: 北京交通大学, 2020.
WANG Y F. Research on the electromagnetic emission characteristics of high-speed maglev system[D]. Beijing: Beijing Jiaotong University, 2020. doi: 10.26944/d.cnki.gbfju.2020.001405
|
[32] |
徐飞, 罗世辉, 邓自刚. 磁悬浮轨道交通关键技术及全速度域应用研究[J]. 铁道学报, 2019, 41(3): 40–49. DOI: 10.3969/j.issn.1001-8360.2019.03.006
XU F, LUO S H, DENG Z G. Study on key technologies and whole speed range application of maglev rail transport[J]. Journal of the China Railway Society, 2019, 41(3): 40–49. doi: 10.3969/j.issn.1001-8360.2019.03.006
|
[33] |
WANG H D, DENG Z G, MA S S, et al. Dynamic simulation of the HTS maglev vehicle-bridge coupled system based on levitation force experiment[J]. IEEE Transactions on Applied Superconductivity, 2019, 29(5): 3601606. doi: 10.1109/TASC.2019.2895503
|
[34] |
ZHANG J K, DENG Z G, WANG W, et al. Vibration characteristics of the new high-temperature superconducting maglev vehicle based on operation test[J]. IEEE Transac-tions on Applied Superconductivity, 2021, 31(8): 3602904. doi: 10.1109/TASC.2021.3091087
|
[35] |
吴祥明. 高速磁浮上海示范线的建设[J]. 同济大学学报(自然科学版), 2002, 30(7): 814–818. DOI: 10.3321/j.issn:0253-374X.2002.07.008
WU X M. Construction of Shanghai maglev demonstration line[J]. Journal of Tongji University (Natural Science), 2002, 30(7): 814–818. doi: 10.3321/j.issn:0253-374X.2002.07.008
|
[36] |
李琦. 我国时速600公里高速磁浮试验样车下线[J]. 今日科苑, 2019(6): 1.
|
[37] |
MONTGOMERY D B. Overview of the 2004 Magplane design[C]// Maglev 2004 Proceedings. 2004: 106-113.
|
[38] |
GUROL S, BALDI B, POST R. General atomics urban maglev program status[C]//Proc of the 19th International Conference on Magnetically Levitated Systems and Linear Drives. 2006: 1-4.
|
[39] |
ABDELRAHMAN A S, SAYEED J, YOUSSEF M Z. Hyperloop transportation system: analysis, design, control, and implementation[J]. IEEE Transactions on Industrial Electronics, 2018, 65(9): 7427–7436. doi: 10.1109/TIE.2017.2777412
|
[40] |
许莹. 中低运量城市轨道交通系统制式选择研究[D]. 北京: 北京交通大学, 2014.
XU Y. Research on system mode selection of medium or small carrying-capacity urban rail transit[D]. Beijing: Beijing Jiaotong University, 2014.
|
[41] |
王兴仁, 邓友生, 李红敏, 等. 都市区城市轨道交通制式综合决策模型[J]. 西安科技大学学报, 2022, 42(5): 968–974.
WANG X R, DENG Y S, LI H M, et al. Comprehensive decision-making model of urban rail transit systems in metropolitan area[J]. Journal of Xi’an University of Science and Technology, 2022, 42(5): 968–974.
|
[42] |
蒋诗泉. 基于一般灰数的灰色关联决策模型及其应用研究[D]. 南京: 南京航空航天大学, 2018.
JIANG S Q. Research on model and application of grey incidence decision making based on general grey number[D]. Nanjing: Nanjing University of Aeronautics and Astro-nautics, 2018. doi: 10.27239/d.cnki.gnhhu.2018.000135
|
[1] | YANG Kai, LIU Jichun, CHEN Suyu, ZHU Xinxin, WANG Hui. Calibration results and analysis of thin-film gauges calibrated with the transfer method[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(6): 106-111. DOI: 10.11729/syltlx20210129 |
[2] | KOU Jie, FU Cheng, GAO Xinglong, SUN Yunqiang. Progress on fluid-solid coupling of vacuum pipeline train and analysis of key technology[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(3): 37-49. DOI: 10.11729/syltlx20220143 |
[3] | YU Baiyang, LYU Hongqiang, ZHOU Yan, LUO Zhenbing, LIU Xuejun. Predictive analysis of flow control in high-speed complex flow field based on machine learning[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(3): 44-54. DOI: 10.11729/syltlx20210168 |
[4] | Shi Shengzhe, Zheng Yaxiong. Uncertainty analysis in submarine standard model resistance test[J]. Journal of Experiments in Fluid Mechanics, 2015, (5): 65-71. DOI: 10.11729/syltlx20150002 |
[5] | Tao Bo, Wang Sheng, Hu Zhiyun, Zhang Lirong, Zhang Zhenrong, Ye Xisheng. TDLAS 技术二次谐波法测量发动机温度[J]. Journal of Experiments in Fluid Mechanics, 2015, (2): 68-72. DOI: 10.11729/syltlx20140053 |
[6] | WANG Gang, TANG Zhi-gong, L(U) Zhi-guo, JIANG Hua, ZHAO Rong-juan. Analysis of uncertainty for aerodynamic test in shock tunnel[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(2): 87-90. DOI: 10.3969/j.issn.1672-9897.2013.02.017 |
[7] | DONG Guo-qing, WANG Zong-ren, HU Chuan-jun, YUAN Shi-Jian, LI Zhou-fu, LI Qiang. FEM analysis and gas pressure intensity test of FL-9 low-speed compressed-air wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(4): 77-82. DOI: 10.3969/j.issn.1672-9897.2007.04.016 |
[8] | Digitalization and analysis of hydrogen-bubble visualized flow structures[J]. Journal of Experiments in Fluid Mechanics, 2003, 17(1): 80-83. DOI: 10.3969/j.issn.1672-9897.2003.01.020 |
[9] | Impulse calculation of no- restriction touch blasting with geometry analysis[J]. Journal of Experiments in Fluid Mechanics, 2003, 17(1): 9-14. DOI: 10.3969/j.issn.1672-9897.2003.01.003 |
[10] | GU Yan, YU Wei-jian. The application of finite element analysis in wind-tunnel balance[J]. Journal of Experiments in Fluid Mechanics, 1999, 13(4): 82-86. DOI: 10.3969/j.issn.1672-9897.1999.04.016 |