Citation: | KOU J, FU C, GAO X L, et al. Progress on fluid-solid coupling of vacuum pipeline train and analysis of key technology[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(3): 37-49. DOI: 10.11729/syltlx20220143 |
[1] |
熊嘉阳, 邓自刚. 高速磁悬浮轨道交通研究进展[J]. 交通运输工程学报, 2021, 21(1): 177–198. DOI: 10.19818/j.cnki.1671-1637.2021.01.008
XIONG J Y, DENG Z G. Research progress of high-speed maglev rail transit[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 177–198. doi: 10.19818/j.cnki.1671-1637.2021.01.008
|
[2] |
沈通, 马志文, 杜晓洁, 等. 世界高速磁悬浮铁路发展现状与趋势分析[J]. 中国铁路, 2020(11): 94–99. DOI: 10.19549/j.issn.1001-683x.2020.11.094
SHEN T, MA Z W, DU X J, et al. Development status and trend analysis of high speed maglev railways worldwide[J]. China Railway, 2020(11): 94–99. doi: 10.19549/j.issn.1001-683x.2020.11.094
|
[3] |
沈志云. 高速磁浮列车对轨道的动力作用及其与轮轨高速铁路的比较[J]. 交通运输工程学报, 2001, 1(1): 1–6. DOI: 10.3321/j.issn:1671-1637.2001.01.001
SHEN Z Y. Dynamic interaction of high speed maglev train on girders and its comparison with the case in ordinary high speed railways[J]. Journal of Traffic and Transportation Engineering, 2001, 1(1): 1–6. doi: 10.3321/j.issn:1671-1637.2001.01.001
|
[4] |
苏靖棋. 超级高铁(Hyperloop)可行性分析[J]. 现代城市轨道交通, 2020(5): 114–118.
|
[5] |
PLAVEC M, MICHELBERGER F. Eine analyse des hyperloop-konzepts[J]. Der Eisenbahn Ingenieur, 2020(11): 52–55.
|
[6] |
沈志云. 关于我国发展真空管道高速交通的思考[J]. 西南交通大学学报, 2005, 40(2): 133–137. DOI: 10.3969/j.issn.0258-2724.2005.02.001
SHEN Z Y. On developing high-speed evacuated tube transportation in China[J]. Journal of Southwest Jiaotong University, 2005, 40(2): 133–137. doi: 10.3969/j.issn.0258-2724.2005.02.001
|
[7] |
邓自刚, 张勇, 王博, 等. 真空管道运输系统发展现状及展望[J]. 西南交通大学学报, 2019, 54(5): 1063–1072. DOI: 10.3969/j.issn.0258-2724.20180204
DENG Z G, ZHANG Y, WANG B, et al. Present situation and prospect of evacuated tube transportation system[J]. Journal of Southwest Jiaotong University, 2019, 54(5): 1063–1072. doi: 10.3969/j.issn.0258-2724.20180204
|
[8] |
周鹏, 李田, 张继业, 等. 真空管道超级列车激波簇结构研究[J]. 机械工程学报, 2020, 56(2): 86–97. DOI: 10.3901/jme.2020.02.086
ZHOU P, LI T, ZHANG J Y, et al. Research on shock wave trains generated by the hyper train in the evacuated tube[J]. Journal of Mechanical Engineering, 2020, 56(2): 86–97. doi: 10.3901/jme.2020.02.086
|
[9] |
ZHOU P, ZHANG J Y, et al. Aerothermal mechanisms induced by the super high-speed evacuated tube maglev train[J]. Vacuum, 2020, 173: 109142. doi: 10.1016/j.vacuum.2019.109142
|
[10] |
周晓, 张殿业, 张耀平. 真空管道中阻塞比对列车空气阻力影响的数值研究[J]. 真空科学与技术学报, 2008, 28(6): 535–538. DOI: 10.13922/j.cnki.cjovst.2008.06.011
ZHOU X, ZHANG D Y, ZHANG Y P. Numerical simulation of blockage rate and aerodynamic drag of high-speed train in evacuated tube transportation[J]. Chinese Journal of Vacuum Science and Technology, 2008, 28(6): 535–538. doi: 10.13922/j.cnki.cjovst.2008.06.011
|
[11] |
KIM T K, KIM K H, KWON H B. Aerodynamic characteristics of a tube train[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2011, 99(12): 1187–1196. doi: 10.1016/j.jweia.2011.09.001
|
[12] |
刘加利, 张继业, 张卫华. 真空管道高速列车气动特性分析[J]. 机械工程学报, 2013, 49(22): 137–143. DOI: 10.3901/JME.2013.22.137
LIU J L, ZHANG J Y, ZHANG W H. Analysis of aerodynamic characteristics of high-speed trains in the evacuated tube[J]. Journal of Mechanical Engineering, 2013, 49(22): 137–143. doi: 10.3901/JME.2013.22.137
|
[13] |
刘加利, 张继业, 张卫华. 真空管道高速列车气动阻力及系统参数设计[J]. 真空科学与技术学报, 2014, 34(1): 10–15. DOI: 10.3969/j.issn.1672-7126.2014.01.03
LIU J L, ZHANG J Y, ZHANG W H. Impacts of pressure, blockage-ratio and speed on aerodynamic drag-force of high-speed trains[J]. Chinese Journal of Vacuum Science and Technology, 2014, 34(1): 10–15. doi: 10.3969/j.issn.1672-7126.2014.01.03
|
[14] |
王博. 真空管道高温超导磁悬浮车气动特性研究[D]. 成都: 西南交通大学, 2017.
WANG B. Study on aerodynamic characteristics of evacuated tube transport-high temperature superconducting maglev[D]. Chengdu: Southwest Jiaotong University, 2017.
|
[15] |
黄尊地, 梁习锋, 常宁. 真空管道交通列车气动阻力数值分析[J]. 机械工程学报, 2019, 55(8): 165–172. DOI: 10.3901/JME.2019.08.165
HUANG Z D, LIANG X F, CHANG N. Numerical analysis of train aerodynamic drag of vacuum tube traffic[J]. Journal of Mechanical Engineering, 2019, 55(8): 165–172. doi: 10.3901/JME.2019.08.165
|
[16] |
王志飞, 那日苏, 李樊, 等. 低真空管道磁浮系统结构参数优化理论研究[J]. 真空科学与技术学报, 2020, 40(1): 27–32. DOI: 10.13922/j.cnki.cjovst.2020.01.06
WANG Z F, NA R S, LI F, et al. Design optimization of vacuum tube maglev transport conditions: a theoretical and orthogonal experimental study[J]. Chinese Journal of Vacuum Science and Technology, 2020, 40(1): 27–32. doi: 10.13922/j.cnki.cjovst.2020.01.06
|
[17] |
冯瑞龙, 王志飞, 冯海全, 等. 基于RBF和BP神经网络的低真空管道高速列车气动阻力预测对比研究[J]. 真空科学与技术学报, 2020, 40(9): 827–832. DOI: 10.13922/j.cnki.cjovst.2020.09.05
FENG R L, WANG Z F, FENG H Q, et al. Aerodynamic resistance of train running in vacuum tube: a simulation study[J]. Chinese Journal of Vacuum Science and Technology, 2020, 40(9): 827–832. doi: 10.13922/j.cnki.cjovst.2020.09.05
|
[18] |
陈绪勇. 真空管道磁悬浮列车空气动力学问题仿真分析[D]. 成都: 西南交通大学, 2013.
CHEN X Y. Aerodynamic simulation analysis of evacuated tube maglev trains[D]. Chengdu: Southwest Jiaotong University, 2013.
|
[19] |
CHEN X Y, ZHAO L F, MA J Q, et al. Aerodynamic simulation of evacuated tube maglev trains with different streamlined designs[J]. Journal of Modern Transportation, 2012, 20(2): 115–120. doi: 10.1007/BF03325788
|
[20] |
ZHANG X H, JIANG Y, LI T. Effect of streamlined nose length on the aerodynamic performance of a 800 km/h evacuated tube train[J]. Fluid Dynamics & Materials Processing, 2020, 16(1): 67–76. doi: 10.32604/fdmp.2020.07776
|
[21] |
PANDEY B K, MUKHERJEA S K. Aerodynamic simulation of evacuated tube transport trains with suction at tail[C]//Proceedings of ASME 2014 International Mechanical Engineering Congress and Exposition. 2015. doi: 10.1115/IMECE2014-37904
|
[22] |
YANG Y, WANG H Y, BENEDICT M, et al. Aerodynamic simulation of high-speed capsule in the hyperloop system[C]//Proc of the 35th AIAA Applied Aerodynamics Conference. 2017: 3741. doi: 10.2514/6.2017-3741
|
[23] |
ZHANG Y P. Numerical simulation and analysis of aerodynamic drag on a subsonic train in evacuated tube transportation[J]. Journal of Modern Transportation, 2012, 20(1): 44–48. doi: 10.1007/BF03325776
|
[24] |
BI H Q, LEI B. Aerodynamic characteristics of evacuated tube high-speed train[C]//Proc of the International Conference on Transportation Engineering 2009, Southwest Jiaotong University. 2009: 3736-3741. doi: 10.1061/41039(345)616
|
[25] |
MA J Q, ZHOU D J, ZHAO L F, et al. The approach to calculate the aerodynamic drag of maglev train in the evacuated tube[J]. Journal of Modern Transportation, 2013, 21(3): 200–208. doi: 10.1007/s40534-013-0019-6
|
[26] |
MOSSI M, SIBILLA S. Swissmetro: aerodynamic drag and wave effects in tunnels under partial vacuum[C]// Proceedings of the 17th International Conference on Magnetically Levitated Systems and Linear Drives. 2002: 156-163.
|
[27] |
MOSSI M, ROSSEL P. Swissmetro: A revolution in the high-speed passenger transport systems[C]//Proc of the 1st Swiss Transport Research Conference. 2001: 1-16.
|
[28] |
LLUESMA-RODRÍGUEZ F, GONZÁLEZ T, HOYAS S. CFD simulation of a hyperloop capsule inside a closed environment[J]. Results in Engineering, 2021, 9: 100196. doi: 10.1016/j.rineng.2020.100196
|
[29] |
JANG K S, LE T T G, KIM J H. Effects of compressible flow phenomena on aerodynamic characteristics in Hyperloop system[J]. Aerospace Science and Technology, 2021, 117: 106970. doi: 10.1016/j.ast.2021.106970
|
[30] |
张晓涵, 李田, 张继业, 等. 亚音速真空管道列车气动壅塞及激波现象[J]. 机械工程学报, 2021, 57(4): 182–190. DOI: 10.3901/JME.2021.04.182
ZHANG X H, LI T, ZHANG J Y, et al. Aerodynamic choked flow and shock wave phenomena of subsonic evacuated tube train[J]. Journal of Mechanical Engineering, 2021, 57(4): 182–190. doi: 10.3901/JME.2021.04.182
|
[31] |
OH J S, KANG T H, HAM S K, et al. Numerical analysis of aerodynamic characteristics of hyperloop system[J]. Energies, 2019, 12(3): 518. doi: 10.3390/en12030518
|
[32] |
GILLANI S A, PANIKULAM V P, SADASIVAN S, et al. CFD analysis of aerodynamic drag effects on vacuum tube trains[J]. Journal of Applied Fluid Mechanics, 2019, 12(1): 303–309. doi: 10.29252/jafm.75.253.29091
|
[33] |
KANG H M, JIN Y M, KWON H B, et al. A study on the aerodynamic drag of transonic vehicle in evacuated tube using computational fluid dynamics[J]. International Journal of Aeronautical and Space Sciences, 2017, 18(4): 614–622. doi: 10.5139/ijass.2017.18.4.614
|
[34] |
ZHOU P, ZHANG J Y, LI T. Effects of blocking ratio and Mach number on aerodynamic characteristics of the evacuated tube train[J]. International Journal of Rail Transportation, 2020, 8(1): 27–44. doi: 10.1080/23248378.2019.1675191
|
[35] |
BAO S J, HU X, WANG J K, et al. Numerical study on the influence of initial ambient temperature on the aerodynamic heating in the tube train system[J]. Advances in Aerodynamics, 2020(1): 579–596. doi: 10.1186/s42774-020-00053-8
|
[36] |
ZHOU P, ZHANG J Y, LI T, et al. Numerical study on wave phenomena produced by the super high-speed evacuated tube maglev train[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 190: 61–70. doi: 10.1016/j.jweia.2019.04.003
|
[37] |
NIU J Q, SUI Y, YU Q J, et al. Numerical study on the impact of Mach number on the coupling effect of aerodynamic heating and aerodynamic pressure caused by a tube train[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 190: 100–111. doi: 10.1016/j.jweia.2019.04.001
|
[38] |
SUI Y, NIU J Q, YUAN Y P, et al. An aerothermal study of influence of blockage ratio on a supersonic tube train system[J]. Journal of Thermal Science, 2022, 31(2): 529–540. doi: 10.1007/s11630-020-1281-7
|
[39] |
NIU J Q, SUI Y, YU Q J, et al. Effect of acceleration and deceleration of a capsule train running at transonic speed on the flow and heat transfer in the tube[J]. Aerospace Science and Technology, 2020, 105: 105977. doi: 10.1016/j.ast.2020.105977
|
[40] |
于梦阁, 张继业, 张卫华. 随机风作用下高速列车的非定常气动载荷[J]. 机械工程学报, 2012, 48(20): 116–123. DOI: 10.3901/JME.2012.20.113
YU M G, ZHANG J Y, ZHANG W H. Unsteady aerodynamic loads of high-speed trains under stochastic winds[J]. Journal of Mechanical Engineering, 2012, 48(20): 116–123. doi: 10.3901/JME.2012.20.113
|
[41] |
于梦阁, 张继业, 张卫华. 桥梁上高速列车的强横风运行安全性[J]. 机械工程学报, 2012, 48(18): 104–111. DOI: 10.3901/JME.2012.18.104
YU M G, ZHANG J Y, ZHANG W H. Running safety of high-speed trains on bridges under strong crosswinds[J]. Journal of Mechanical Engineering, 2012, 48(18): 104–111. doi: 10.3901/JME.2012.18.104
|
[42] |
BETTLE J, HOLLOWAY A G L, VENART J E S. A computational study of the aerodynamic forces acting on a tractor-trailer vehicle on a bridge in cross-wind[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2003, 91(5): 573–592. doi: 10.1016/S0167-6105(02)00461-0
|
[43] |
王永冠, 陈康. 横风对高速动车曲线通过性能的影响[J]. 西南交通大学学报, 2005, 40(2): 224–227. DOI: 10.3969/j.issn.0258-2724.2005.02.019
WANG Y G, CHEN K. Effects of crosswinds on curve negotiation of high-speed power cars[J]. Journal of Southwest Jiaotong University, 2005, 40(2): 224–227. doi: 10.3969/j.issn.0258-2724.2005.02.019
|
[44] |
BAKER C J, HEMIDA H, IWNICKI S, et al. Integration of crosswind forces into train dynamic modelling[J]. Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail and Rapid Transit, 2011, 225(2): 154–164. doi: 10.1177/2041301710392476
|
[45] |
THOMAS D, DIEDRICHS B, BERG M, et al. Dynamics of a high-speed rail vehicle negotiating curves at unsteady crosswind[J]. Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail and Rapid Transit, 2010, 224(6): 567–579. doi: 10.1243/09544097jrrt335
|
[46] |
李田, 张继业, 张卫华. 横风下车辆–轨道耦合动力学性能[J]. 交通运输工程学报, 2011, 11(5): 55–60. DOI: 10.19818/j.cnki.1671-1637.2011.05.009
LI T, ZHANG J Y, ZHANG W H. Coupling dynamics performance of vehicle-track under cross wind[J]. Journal of Traffic and Transportation Engineering, 2011, 11(5): 55–60. doi: 10.19818/j.cnki.1671-1637.2011.05.009
|
[47] |
杨吉忠, 毕海权, 翟婉明. 基于ALE方法的列车横风绕流动力学分析[J]. 铁道学报, 2009, 31(2): 120–124. DOI: 10.3969/j.issn.1001-8360.2009.02.022
YANG J Z, BI H Q, ZHAI W M. Dynamic analysis of train in cross-winds with the arbitrary Lagrangian-eulerian method[J]. Journal of the China Railway Society, 2009, 31(2): 120–124. doi: 10.3969/j.issn.1001-8360.2009.02.022
|
[48] |
崔涛, 张卫华, 孙帮成. 高速列车流固耦合振动的研究方法及其应用[J]. 铁道学报, 2013, 35(4): 16–22. DOI: 10.3969/j.issn.1001-8360.2013.04.003
CUI T, ZHANG W H, SUN B C. Research method and application of fluid-solid coupling vibration for high-speed train[J]. Journal of the China Railway Society, 2013, 35(4): 16–22. doi: 10.3969/j.issn.1001-8360.2013.04.003
|
[49] |
LI T, ZHANG J Y, ZHANG W H. An improved algorithm for fluid-structure interaction of high-speed trains under crosswind[J]. Journal of Modern Transportation, 2011, 19(2): 75–81. doi: 10.1007/BF03325743
|
[50] |
李田, 张继业, 张卫华. 横风下高速列车流固耦合动力学联合仿真[J]. 振动工程学报, 2012, 25(2): 138–145. DOI: 10.16385/j.cnki.issn.1004-4523.2012.02.015
LI T, ZHANG J Y, ZHANG W H. Co-simulation of high-speed train fluid-structure interaction dynamics in crosswinds[J]. Journal of Vibration Engineering, 2012, 25(2): 138–145. doi: 10.16385/j.cnki.issn.1004-4523.2012.02.015
|
[51] |
李田, 张继业, 李忠继, 等. 基于Fluent与Simpack的高速列车流固耦合联合仿真[J]. 计算力学学报, 2012, 29(5): 675–680. DOI: 10.7511/jslx20125006
LI T, ZHANG J Y, LI Z J, et al. Co-simulation on fluid-structure interaction of high-speed train based on Fluent and Simpack[J]. Chinese Journal of Computational Mechanics, 2012, 29(5): 675–680. doi: 10.7511/jslx20125006
|
[52] |
LI T, ZHANG X H, JIANG Y, et al. Aerodynamic design of a subsonic evacuated tube train system[J]. Fluid Dynamics & Materials Processing, 2020, 16(1): 121–130. doi: 10.32604/fdmp.2020.07976
|
[53] |
李田. 高速列车流固耦合计算方法及动力学性能研究[D]. 成都: 西南交通大学, 2012.
LI T. Approaches and dynamic performances of high-speed train fluid-structure[D]. Chengdu: Southwest Jiaotong University, 2012.
|
[54] |
李田, 张继业, 张卫华. 高速列车流固耦合的平衡状态方法[J]. 机械工程学报, 2013, 49(2): 95–101. DOI: 10.3901/JME.2013.02.095
LI T, ZHANG J Y, ZHANG W H. Co-simulation of high-speed train fluid-structure interaction based on the equilibrium state[J]. Journal of Mechanical Engineering, 2013, 49(2): 95–101. doi: 10.3901/JME.2013.02.095
|
[55] |
崔涛. 高速列车流固耦合振动及运行安全性研究[D]. 成都: 西南交通大学, 2011.
CUI T. Study on fluid-solid coupling vibration and running safety of high speed trains[D]. Chengdu: Southwest Jiaotong University, 2011.
|
[56] |
崔涛, 张卫华, 张曙光, 等. 列车高速通过站台时的流固耦合振动研究[J]. 中国铁道科学, 2010, 31(2): 50–55.
CUI T, ZHANG W H, ZHANG S G, et al. Study on the fluid-solid coupling vibration of train passing through platform at high speed[J]. China Railway Science, 2010, 31(2): 50–55.
|
[57] |
崔涛, 张卫华. 基于姿态变化的列车侧风安全性研究的新方法[J]. 振动与冲击, 2011, 30(10): 143–146, 152. DOI: 10.13465/j.cnki.jvs.2011.10.033
CUI T, ZHANG W H. A new studying method for safety of a train with attitude changing in side wind[J]. Journal of Vibration and Shock, 2011, 30(10): 143–146, 152. doi: 10.13465/j.cnki.jvs.2011.10.033
|
[58] |
崔涛, 张卫华. 高速列车侧风安全域计算方法[J]. 交通运输工程学报, 2011, 11(5): 42–48. DOI: 10.19818/j.cnki.1671-1637.2011.05.007
CUI T, ZHANG W H. Calculation method of cross wind security domain for high-speed train[J]. Journal of Traffic and Transportation Engineering, 2011, 11(5): 42–48. doi: 10.19818/j.cnki.1671-1637.2011.05.007
|
[59] |
崔涛, 张卫华. 基于姿态变化的列车侧风安全性研究[J]. 铁道学报, 2010, 32(5): 25–29. DOI: 10.3969/j.issn.1001-8360.2010.05.005
CUI T, ZHANG W H. Study on safety of train in side wind with changing attitudes[J]. Journal of the China Railway Society, 2010, 32(5): 25–29. doi: 10.3969/j.issn.1001-8360.2010.05.005
|
[1] | DU Baihe, ZHANG Songhe, GE Qiang, WANG Maogang. Study on flow field characteristics of inert gas-air hybrid arc[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(5): 69-75. DOI: 10.11729/syltlx20210052 |
[2] | ZHANG Xinghuan, ZHANG Pingtao, PENG Bo, YI Xian. Prediction of icing wind tunnel temperature field with machine learning[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(5): 8-15. DOI: 10.11729/syltlx20210196 |
[3] | Fu Cheng, Zhao Bo, Xu Dachuan, Liao Daxiong, Pei Haitao, Zhu Bo, Qin Honggang. Investigation on flow turbulent characteristics of plate-fin and tube-fin heat exchanger[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(6): 22-27. DOI: 10.11729/syltlx20190036 |
[4] | Wang Feng, Xu Jinglei, Wang Yangsheng. Study of flow field characteristics of an over-under TBCC exhaust system during mode transition process[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 68-75. DOI: 10.11729/syltlx20190037 |
[5] | Gong Jishuang, Zhou Lin, Zhang Yining, Teng Honghui. Investigation on flow field structure of rotating detonation using the method of characteristics[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(1): 89-96. DOI: 10.11729/syltlx20180072 |
[6] | Liao Daxiong, Chen Jiming, Zheng Juan, Chen Qin, Pei Haitao, Wu Shenghao. General performance of 0.6m continuous transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6): 88-93. DOI: 10.11729/syltlx20170086 |
[7] | Yang Hong, Luo Yue, Wu Dong, Zhou Ping. Study on supersonic turbulence plate ablation flow field in arc heater[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(4): 72-77. DOI: 10.11729/syltlx20170181 |
[8] | Yu Mingxing, Bai Shuxin, Xu Xiaoliang, Cao Zhanwei. Research on method for evaluating the thermal protective performance of non-catalysis material in non-equilibrium flow[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(4): 84-89. DOI: 10.11729/syltlx20170084 |
[9] | Luo Yue, Zhou Wei, Yang Hong, Chen Wei. CFD analysis of the arc heater turbulent flow field of flat plate testing[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(2): 86-92. DOI: 10.11729/syltlx20160088 |
[10] | Yang Bo, Liu Sen. Investigation of the performance of flow field in supersonic/hypersonic wind tunnel with different test section geometry configurations[J]. Journal of Experiments in Fluid Mechanics, 2014, (4): 59-64. DOI: 10.11729/syltlx20130023 |
1. |
韩笑,高创,郑怡彤,刘小兵. 切角凹槽矩形截面桥塔的气动特性试验研究. 石家庄铁道大学学报(自然科学版). 2024(01): 9-15+23 .
![]() | |
2. |
白桦,刘博祥,姬乃川,李加武. 节段模型二元端板合理尺寸估算方法. 振动与冲击. 2023(02): 312-320 .
![]() | |
3. |
王仰雪,刘庆宽,靖洪淼,李震,孙一飞. 倾斜栏杆对流线型箱梁涡激振动性能影响的试验研究. 振动与冲击. 2023(06): 232-239+254 .
![]() | |
4. |
于畅,仇法梅,田学东,杨群,刘小兵. 圆角矩形柱平均气动力特性的雷诺数效应试验研究. 石家庄铁道大学学报(自然科学版). 2023(02): 29-34 .
![]() | |
5. |
杨群,于畅,刘小兵,刘庆宽. 不同圆角率的方形断面斯特罗哈数的雷诺数效应研究. 振动与冲击. 2023(11): 223-231 .
![]() | |
6. |
刘庆宽,王仰雪,孙一飞,李震,韩原,靖洪淼. 栏杆高度对流线型箱梁涡振性能影响的试验研究. 湖南大学学报(自然科学版). 2023(07): 140-150 .
![]() | |
7. |
刘路路,杨皓然,邹云峰,何旭辉,韩艳,陈志强. 公铁同层双幅非对称主梁气动干扰特性研究. 铁道科学与工程学报. 2023(10): 3861-3872 .
![]() | |
8. |
杨群,于畅,于文文,刘小兵. 圆角方柱气动特性的风洞试验研究. 振动与冲击. 2023(24): 59-68 .
![]() | |
9. |
韩振,李波,甄伟,杨庆山,田玉基. 宽厚比为5的超高层建筑风荷载特性研究. 哈尔滨工程大学学报. 2022(02): 196-202 .
![]() | |
10. |
张庆华,马文勇,杨杰,张彦,周帅伟. 不同风倾角下典型等边角钢静风力风洞试验研究. 振动工程学报. 2022(02): 277-283 .
![]() | |
11. |
白桦,王涵,姬乃川,李加武. 节段模型长宽比对风洞测力试验及计算分析的影响. 中国公路学报. 2022(08): 202-212 .
![]() | |
12. |
杨群,刘庆宽,韩瑞,刘小兵. 不同圆角率的方形断面气动特性的雷诺数效应. 振动与冲击. 2020(04): 150-156 .
![]() | |
13. |
沈国辉,姚剑锋,郭勇,邢月龙,楼文娟. 直径30 cm圆柱的气动力参数和绕流特性研究. 振动与冲击. 2020(06): 22-28 .
![]() | |
14. |
温青,池俊豪,华旭刚,王修勇,孙洪鑫. 端部条件和展弦比对矩形断面节段模型气动力特征的影响. 实验流体力学. 2020(04): 36-43 .
![]() | |
15. |
任若松,梁新华,刘小兵,马文勇,刘庆宽. 准流线型桥梁断面气动力特性的雷诺数效应研究. 工程力学. 2020(S1): 139-144+167 .
![]() | |
16. |
李海飞,梁新华,孙一飞,崔会敏,刘庆宽. 流线型桥梁断面表面脉动风荷载特性研究. 工程力学. 2020(S1): 242-248+260 .
![]() | |
17. |
马文勇,汪冠亚,郑熙,陈铁,李智,张程远,方平治. 端部状态对斜置圆柱气动力分布的影响. 实验流体力学. 2019(02): 43-50 .
![]() | |
31. |
杨群,刘庆宽,孙亚松,刘小兵. 圆角方形断面气动特性试验. 振动.测试与诊断. 2020(01): 140-147+208 .
![]() |