MA Z H, JING X L, DU Y C, et al. Mechanism of expanded equal-section inclined hood to reduce initial compression wave by high-speed maglev passing through the tunnel[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(1): 100-112. DOI: 10.11729/syltlx20220123
Citation: MA Z H, JING X L, DU Y C, et al. Mechanism of expanded equal-section inclined hood to reduce initial compression wave by high-speed maglev passing through the tunnel[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(1): 100-112. DOI: 10.11729/syltlx20220123

Mechanism of expanded equal-section inclined hood to reduce initial compression wave by high-speed maglev passing through the tunnel

More Information
  • Received Date: October 31, 2022
  • Revised Date: December 04, 2022
  • Accepted Date: December 07, 2022
  • Available Online: March 09, 2023
  • The initial compression wave is generated when the high-speed rail vehicle enters the tunnel. The compression wave propagates to the exit of the tunnel at the speed of sound and radiates outward to form a micropressure wave, which brings serious environmental problems. Using the three-dimensional unsteady, compressible flow N–S equation and the SST kω turbulence model, and taking the maglev train with a speed of 600 km/h as the research object, the initial compression wave generated by maglev train entering the tunnel with extended equal-section hood, extended equal-section oblique hood and no hood was simulated. The mitigation effect and mechanism of the inclined end and the oblique angle of the hood on the initial compression wave were analyzed. The following conclusions are mainly drawn: the formation of the maximum pressure gradient of the initial compression wave is directly related to the entrance of the part of the train into the tunnel/hood where the change rate of the cross-sectional area of the train head is the maximum, which corresponds to the maximum change rate of the flow in the tunnel. The maximum gradient of the compression wave can be greatly reduced by setting the extended constant section hood, and the relief rate is 49.92%. Changing the vertical port of the expanded isocross section hood to the positive oblique port can further improve the mitigation rate. When the oblique angle is 10°, 20°, 30° and 39°, the increase of the mitigation rate is 12.93%, 10.32%, 8.18% and 6.28%, respectively. It is suggested that the oblique hood has the most obvious effect on the peak pressure gradient of the initial compression wave when the oblique angle is 10°, and the total relief rate is 62.85%. In this paper, the coupling analysis method of the change rate of the cross section area of the head, the air flow rate and the compression wave at the observation point, and the mutual mapping relationship between the head shape and the air flow rate, which affect the maximum pressure gradient of the initial compression wave, can reasonably explain the mechanism of the hood at the entrance to the cave to reduce the initial compression wave. It provides a new method for further optimization of the train head shape and design of different types of hood and analysis of aerodynamic effects.
  • [1]
    TAKAYAMA K, SASOH A, ONODERA O, et al. Experi-mental investigation on tunnel sonic boom[J]. Shock Waves, 1995, 5(3): 127–138. doi: 10.1007/BF01435520
    [2]
    王英学, 高波, 赵文成. 车隧气动效应原理与方法[M]. 北京: 中国铁道出版社, 2017.
    [3]
    SAITO S. Optimizing cross-sectional area of tunnel entrance hood for high speed rail[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 184: 296–304. doi: 10.1016/j.jweia.2018.11.028
    [4]
    SAITO S, FUKUDA T. Design of a tunnel entrance hood for high-speed trains[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 206: 104375. doi: 10.1016/j.jweia.2020.104375
    [5]
    MIYACHI T, FUKUDA T. Model experiments on area optimization of multiple openings of tunnel hoods to reduce micro-pressure waves[J]. Tunnelling and Underground Space Technology, 2021, 115: 103996. doi: 10.1016/j.tust.2021.103996
    [6]
    HEINE D, EHRENFRIED K, HEINE G, et al. Experimental and theoretical study of the pressure wave generation in railway tunnels with vented tunnel portals[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018, 176: 290–300. doi: 10.1016/j.jweia.2018.03.020
    [7]
    UYSTEPRUYST D, WILLIAM-LOUIS M, MONNOYER F. 3D numerical design of tunnel hood[J]. Tunnelling and Underground Space Technology, 2013, 38: 517–525. doi: 10.1016/j.tust.2013.08.008
    [8]
    KIM D H, CHEOL S Y, IYER R S, et al. A newly designed entrance hood to reduce the micro pressure wave emitted from the exit of high-speed railway tunnel[J]. Tunnelling and Underground Space Technology, 2021, 108: 103728. doi: 10.1016/j.tust.2020.103728
    [9]
    XIANG X T, XUE L P, WANG B L. Aerodynamic effects of inclined portals on the initial compression wave generated by a high-speed train entering a tunnel[J]. Journal of Fluids Engineering, 2015, 137(12): 121104. doi: 10.1115/1.4030843
    [10]
    LI W H, LIU T H, HUO X S, et al. Influence of the enlarged portal length on pressure waves in railway tunnels with cross-section expansion[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 190: 10–22. doi: 10.1016/j.jweia.2019.03.031
    [11]
    王田天, 胡冲, 龚彦峰, 等. 扩大斜切式缓冲结构对时速400 km铁路隧道口微气压波缓解研究[J]. 空气动力学学报, 2021, 39(5): 151–161. DOI: 10.7638/kqdlxxb-2021.0101

    WANG T T, HU C, GONG Y F, et al. Mitigation of micro-pressure wave at 400 km/h railway tunnel exit by oblique enlarged tunnel-hood[J]. Acta Aerodynamica Sinica, 2021, 39(5): 151–161. doi: 10.7638/kqdlxxb-2021.0101
    [12]
    王维洲, 钟登朝, 胖涛, 等. 400km/h高速铁路隧道洞口等截面无开孔扩大型缓冲结构气动效应分析[J]. 高速铁路技术, 2021, 12(5): 57–61.

    WANG W Z, ZHONG D C, PAN T, et al. Aerodynamic effect analysis of enlarged buffer structure without opening at uniform cross-section of tunnel portals of 400km/h high-speed railway[J]. High Speed Railway Technology, 2021, 12(5): 57–61.
    [13]
    山崎幹男, 若原敏裕, 永長隆昭, et al. 超高速鉄道トンネル内に生じる圧力変動評価[C]//土木学会論文集. 2003, 738(64): 171-189.
    [14]
    本田敦, 高橋和也, 野澤剛二郎, et al. 超高速鉄道トンネルにおける微気圧波の評価および緩衝工の提案[C]//土木学会論文集 A1(構造·地震工学). 2015, 71(3): 327-340.
    [15]
    本田敦, 高橋和也, 野澤剛二郎, et al. 超高速鉄道トンネルにおける入口側円型緩衝工の微気圧波低減効果[C]//土木学会論文集 A1(構造·地震工学). 2015, 71(1): 128-138.
    [16]
    梅元贵, 赵汗冰, 陈大伟, 等. 时速600 km磁浮列车驶入隧道时初始压缩波特征的数值模拟[J]. 交通运输工程学报, 2020, 20(1): 120–131. DOI: 10.19818/j.cnki.1671-1637.2020.01.009

    MEI Y G, ZHAO H B, CHEN D W, et al. Numerical simulation of initial compression wave characteristics of 600 km·h–1 maglev train entering tunnel[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 120–131. doi: 10.19818/j.cnki.1671-1637.2020.01.009
    [17]
    梅元贵, 李绵辉, 胡啸, 等. 时速600公里磁浮列车隧道初始压缩波洞内传播特征和洞口微气压波特征[J]. 交通运输工程学报, 2021, 21(4): 150–162. DOI: 10.19818/j.cnki.1671-1637.2021.04.011

    MEI Y G, LI M H, HU X, et al. Propagation characteristics of initial compression wave in cave and portal micro-pressure waves characteristics when 600 km·h–1 maglev train entering tunnels[J]. Journal of Traffic and Transportation Engineering, 2021, 21(4): 150–162. doi: 10.19818/j.cnki.1671-1637.2021.04.011
    [18]
    张洁, 王雨舸, 韩帅, 等. 缓冲结构长度对600 km/h磁浮列车通过隧道时的压力波特性影响分析[J]. 中南大学学报(自然科学版), 2022, 53(5): 1668–1678.

    ZHANG J, WANG Y G, HAN S, et al. Influence of hood length on pressure wave characteristics induced by 600 km/h maglev train passing through tunnel[J]. Journal of Central South University (Science and Technology), 2022, 53(5): 1668–1678.
    [19]
    张洁, 王雨舸, 韩帅, 等. 空腔结构对高速磁浮隧道压力波的影响研究[J/OL]. [2022-10-30]. 铁道科学与工程学报.

    ZHANG J, WANG Y G, HAN S, et al. Influence of cavity structure on pressure waves in a high-speed maglev tunnel[J/OL]. [2022-10-30]. Journal of Railway Science and Engineering. doi: 10.19713/j.cnki.43-1423/u. T20220986.
    [20]
    MASHIMO S, NAKATSU E, AOKI T, et al. Entry compression wave generated by a high-speed train entering a tunnel[J]. TRANSACTIONS OF THE JAPAN SOCIETY OF MECHANICAL ENGINEERS Series B, 1995, 61(590): 3720–3727. doi: 10.1299/kikaib.61.3720
    [21]
    国家铁路局. 铁路应用空气动力学 第4部分: 列车空气动力学性能数值仿真规范: TB/T 3503.4—2018[S]. 北京: 中国铁道出版社.
    [22]
    KU Y C, RHO J H, YUN S H, et al. Optimal cross-sectional area distribution of a high-speed train nose to minimize the tunnel micro-pressure wave[J]. Structural and Multidiscipli-nary Optimization, 2010, 42(6): 965–976. doi: 10.1007/s00158-010-0550-6
    [23]
    胡啸. 开口型缓冲结构减缓高速磁浮列车驶入隧道时洞内外压力波动特性研究[D]. 兰州: 兰州交通大学, 2019.

    HU X. Study on the alleviation of hood with multiple windows on pressure fluctuation characteristics inside and outside the tunnel induced by high speed maglev train passing through the tunnel[D]. Lanzhou: Lanzhou Jiatong University, 2019. doi: 10.27205/d.cnki.gltec.2019.000506
    [24]
    YANG M Z, ZHONG S, ZHANG L, et al. 600 km/h moving model rig for high-speed train aerodynamics[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2022, 227: 105063. doi: 10.1016/j.jweia.2022.105063
    [25]
    LU Y B, WANG T T, YANG M Z, et al. The influence of reduced cross-section on pressure transients from high-speed trains intersecting in a tunnel[J]. Journal of Wind Enginee-ring and Industrial Aerodynamics, 2020, 201: 104161. doi: 10.1016/j.jweia.2020.104161
    [26]
    CD-ADAPCO GROUP. Methodology STAR–CCM+ version 17.02 user guide[M]. UK: Computational Dynamics Limited, 2021.
  • Related Articles

    [1]LI Meng, ZHAO Huiyong, YUAN Qiang, CHEN Li, MU Jinhe. Experimental research on the influence of turbulence intensity on boundary layer transition in Mach 3 supersonic flow[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(6): 56-64. DOI: 10.11729/syltlx20220087
    [2]LIANG Zhi, HU Fei, SHI Yu, ZHANG Zhe, LIU Lei. Research of mast shadow effect on the average wind speed and turbulence intensity by field experiment[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(2): 88-97. DOI: 10.11729/syltlx20220010
    [3]ZHU Bo, CHEN Jiming, WU Wei, PEI Haitao. Experimental investigation of turbulence intensity measurement in continuous transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics. DOI: 10.11729/syltlx20220034
    [4]YANG Junwei, YANG Hua, FU Shifeng, ZONG Wangwang, SHA Chenglong. Wind tunnel experimental study of the grille-generated turbulence in the short test section[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(6): 86-93. DOI: 10.11729/syltlx20210042
    [5]HU Shangyu, LI Qiusheng, ZHANG Ming. Active turbulence simulation study of wind loads on standard low-rise building[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(4): 22-29. DOI: 10.11729/syltlx20190157
    [6]Yu Qianqian, Wang Jinhua, Zhang Weijie, Zhang Meng, Huang Zuohua. Development of scale-controlled premixed turbulent burner and the flame structure analysis[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(2): 10-17. DOI: 10.11729/syltlx20170150
    [7]Ma Ziran, Xu Minyi, Luan Jian, Liu Xiaopeng, Zhao Feifei. Statistical properties of turbulent free jets issuing from rectangular nozzles with different aspect ratios[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(1): 54-61. DOI: 10.11729/syltlx20160116
    [8]Zhu Bo, Peng Qiang, Tang Gengsheng. Digital signal process of low turbulence intensity based on EMD[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(5): 74-79. DOI: 10.11729/syltlx20150148
    [9]WU Wen-fei, XIE Jing-xing, GONG Zhi-jun, LI Bao-wei. PIV measurements of the turbulence integral length scale on cold combustion flow field in burner zone of tangential firing boiler[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(2): 38-41,50. DOI: 10.3969/j.issn.1672-9897.2012.02.008
    [10]LIU Gang, WANG Yang, WANG Xue-yan, SHI Jia-tao, WANG Jing. PIV measurements of the ILS on in-cylinder gas turbulent flow field of gasoline engine[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(1): 59-63,67. DOI: 10.3969/j.issn.1672-9897.2007.01.012
  • Cited by

    Periodical cited type(7)

    1. 郭沛洋,张毅,张梦卓,胡海豹. 亲水-超疏水相间表面通气减阻实验研究. 力学学报. 2024(01): 94-100 .
    2. 秦立果,刘建波,李航,卢山,马泽宇,王征,董光能. 水下湍流减阻技术研究进展. 表面技术. 2024(16): 1-18 .
    3. 张春来,张丽霞,王潇,吴银涛,王波. 沟槽型微纳复合结构表面的制备与减阻性能研究. 材料导报. 2023(12): 239-243 .
    4. 张奕,潘翀,窦建宇,张淼. 微型涡流发生器影响下的湍流边界层流场与摩阻特性. 实验流体力学. 2023(04): 48-58 . 本站查看
    5. 李茂林,张浩,玄克勇,石若冉,张志. 壁面微沟槽减阻技术研究进展. 煤气与热力. 2023(10): 12-19 .
    6. 李炳炘,张浩,玄克勇,孙国梁. 微沟槽减阻技术研究现状与进展综述. 煤气与热力. 2023(12): 21-27 .
    7. 罗忠,刘凯,周欣,胡俊波. 水下目标壳体复合涂层阻力试验. 船舶工程. 2022(09): 147-151 .

    Other cited types(9)

Catalog

    Article Metrics

    Article views (5855) PDF downloads (41) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close