Citation: | CHEN J, ZONG H H, SONG H M, et al. AI-based real-time noise reduction of flow field pressure signals under plasma electromagnetic interference[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(4): 59-65. DOI: 10.11729/syltlx20230030 |
[1] |
李应红, 吴云. 等离子体激励调控流动与燃烧的研究进展与展望[J]. 中国科学(技术科学), 2020, 50(10): 1252–1273. DOI: 10.1360/SST-2020-0111
LI Y H, WU Y. Research progress and outlook of flow control and combustion control using plasma actuation[J]. Scientia Sinica (Technologica), 2020, 50(10): 1252–1273. doi: 10.1360/SST-2020-0111
|
[2] |
赵志杰, 罗振兵, 刘杰夫, 等. 基于分布式合成双射流的飞行器无舵面三轴姿态控制飞行试验[J]. 力学学报, 2022, 54(5): 1220–1228. DOI: 10.6052/0459-1879-21-586
ZHAO Z J, LUO Z B, LIU J F, et al. Flight test of aircraft three-axis attitude control without rudders based on distributed dual synthetic jets[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(5): 1220–1228. doi: 10.6052/0459-1879-21-586
|
[3] |
姚张奕, 史志伟, 董益章. 深度强化学习在翼型分离流动控制中的应用[J]. 实验流体力学, 2022, 36(3): 55–64. DOI: 10.11729/syltlx20210085
YAO Z Y, SHI Z W, DONG Y Z. Deep reinforcement learning for the control of airfoil flow separation[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(3): 55–64. doi: 10.11729/syltlx20210085
|
[4] |
兰子奇, 史志伟, 孙琪杰, 等. AC–DBD等离子体激励对L形截面钝体风荷载减阻的实验研究[J]. 实验流体力学, 2021, 35(2): 83–91. DOI: 10.11729/syltlx20200095
LAN Z Q, SHI Z W, SUN Q J, et al. Experimental study on drag reduction of L-shaped bluff body by AC–DBD plasma actuation[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(2): 83–91. doi: 10.11729/syltlx20200095
|
[5] |
CHENG X Q, WONG C W, HUSSAIN F, et al. Flat plate drag reduction using plasma-generated streamwise vortices[J]. Journal of Fluid Mechanics, 2021, 918: A24. doi: 10.1017/jfm.2021.311
|
[6] |
DUONG A H, CORKE T C, THOMAS F O. Characteristics of drag-reduced turbulent boundary layers with pulsed-direct-current plasma actuation[J]. Journal of Fluid Mechanics, 2021, 915: A113. doi: 10.1017/jfm.2021.167
|
[7] |
LI Z, SHI Z W, DU H, et al. Analysis of flow separation control using nanosecond-pulse discharge plasma actuators on a flying wing[J]. Plasma Science and Technology, 2018, 20(11): 116–125.
|
[8] |
周岩, 罗振兵, 王林, 等. 等离子体合成射流激励器及其流动控制技术研究进展[J]. 航空学报, 2022, 43(3): 90–132. DOI: 10.7498/aps.68.20190683
ZHOU Y, LUO Z B, WANG L, et al. Plasma synthetic jet actuator for flow control: review[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(3): 90–132. doi: 10.7498/aps.68.20190683
|
[9] |
WU B, GAO C, LIU F, et al. Reduction of turbulent boundary layer drag through dielectric-barrier-discharge plasma actuation based on the Spalding formula[J]. Plasma Science and Technology, 2019, 21(4): 107–114.
|
[10] |
金元中, 郑博睿, 喻明浩, 等. 滑动放电等离子体控制细长体头部背风区非对称涡实验研究[J]. 实验流体力学, 2022, 36(5): 43–51. DOI: 10.11729/syltlx20210101
JIN Y Z, ZHENG B R, YU M H, et al. Experimental study on flow control of asymmetric vortex over the leeward region of the head of the slender body by sliding discharge plasma actuation[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(5): 43–51. doi: 10.11729/syltlx20210101
|
[11] |
张卫国, 史喆羽, 李国强, 等. 风力机翼型动态失速等离子体流动控制数值研究[J]. 力学学报, 2020, 52(6): 1678–1689. DOI: 10.6052/0459-1879-20-090
ZHANG W G, SHI Z Y, LI G Q, et al. Numerical study on dynamic stall flow control for wind turbine airfoil using plasma actuator[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1678–1689. doi: 10.6052/0459-1879-20-090
|
[12] |
黄广靖, 戴玉婷, 杨超. 低雷诺数俯仰振荡翼型等离子体流动控制[J]. 力学学报, 2021, 53(1): 136–155. DOI: 10.6052/0459-1879-20-183
HUANG G J, DAI Y T, YANG C. Plasma-based flow control on pitching airfoil at low Reynolds number[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(1): 136–155. doi: 10.6052/0459-1879-20-183
|
[13] |
梁华, 李应红, 程邦勤, 等. 等离子体气动激励抑制翼型失速分离的仿真研究[J]. 航空动力学报, 2008, 23(5): 777–783. DOI: 10.13224/j.cnki.jasp.2008.05.004
LIANG H, LI Y H, CHENG B Q, et al. Numerical simulation on airfoil stall separation suppression by plasma aerodynamic actuation[J]. Journal of Aerospace Power, 2008, 23(5): 777–783. doi: 10.13224/j.cnki.jasp.2008.05.004
|
[14] |
杜海, 史志伟, 程克明, 等. 纳秒脉冲等离子体分离流控制频率优化及涡运动过程分析[J]. 航空学报, 2016, 37(7): 2102–2111.
DU H, SHI Z W, CHENG K M, et al. Frequency optimization and vortex dynamic process analysis of separated flow control by nanosecond pulsed plasma discharge[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(7): 2102–2111.
|
[15] |
郝琳召, 张彬乾, 陈真利. 纳秒等离子体激励控制翼型流动分离机理研究[J]. 航空工程进展, 2014, 5(1): 25–32. DOI: 10.3969/j.issn.1674-8190.2014.01.005
HAO L Z, ZHANG B Q, CHEN Z L. Investigation on mechanisms of separation control over an airfoil using nanosecond pulsed plasma actuator[J]. Advances in Aeronautical Science and Engineering, 2014, 5(1): 25–32. doi: 10.3969/j.issn.1674-8190.2014.01.005
|
[16] |
MENG X S, LONG Y X, WANG J L, et al. Dynamics and control of the vortex flow behind a slender conical forebody by a pair of plasma actuators[J]. Physics of Fluids, 2018, 30(2): 024101. doi: 10.1063/1.5005514
|
[17] |
孟宣市, 惠伟伟, 易贤, 等. AC–SDBD等离子体激励防/除冰研究现状与展望[J]. 空气动力学学报, 2022, 40(2): 31–49. DOI: 10.7638/kqdlxxb-2021.0159
MENG X S, HUI W W, YI X, et al. Anti-/ De-icing by AC–SDBD plasma actuators: status and outlook[J]. Acta Aerodynamica Sinica, 2022, 40(2): 31–49. doi: 10.7638/kqdlxxb-2021.0159
|
[18] |
CAI J S, TIAN Y Q, MENG X S, et al. An experimental study of icing control using DBD plasma actuator[J]. Experiments in Fluids, 2017, 58(8): 102. doi: 10.1007/s00348-017-2378-y
|
[19] |
WEI B, WU Y, LIANG H, et al. SDBD based plasma anti-icing: A stream-wise plasma heat knife configuration and criteria energy analysis[J]. International Journal of Heat and Mass Transfer, 2019, 138: 163–172. doi: 10.1016/j.ijheatmasstransfer.2019.04.051
|
[20] |
LATTARI F, GONZALEZ LEON B, ASARO F, et al. Deep learning for SAR image despeckling[J]. Remote Sensing, 2019, 11(13): 1532. doi: 10.3390/rs11131532
|
[21] |
ZHU W Q, MOUSAVI S M, BEROZA G C. Seismic signal denoising and decomposition using deep neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11): 9476–9488. doi: 10.1109/TGRS.2019.2926772
|
[22] |
TIAN C W, FEI L K, ZHENG W X, et al. Deep learning on image denoising: an overview[J]. Neural Networks, 2020, 131: 251–275. doi: 10.1016/j.neunet.2020.07.025
|
[23] |
GOYAL B, DOGRA A, AGRAWAL S, et al. Image denoising review: from classical to state-of-the-art approaches[J]. Information Fusion, 2020, 55: 220–244. doi: 10.1016/j.inffus.2019.09.003
|
[24] |
ANWAR S, BARNES N. Real image denoising with feature attention[C]//Proc of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, 2020: 3155-3164.
|