Citation: | LIU X N, LIU S T, ZHOU G C, et al. Wind tunnel test research on the characteristics of rotor blade-vortex interaction noise[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(3): 84-91. DOI: 10.11729/syltlx20210190 |
[1] |
YU Y H. Rotor blade–vortex interaction noise[J]. Progress in Aerospace Sciences, 2000, 36(2): 97–115. doi: 10.1016/S0376-0421(99)00012-3
|
[2] |
Du Vall T, Sim B, Schmitz F. Cabin versus Far-Field Blade- Vortex Interaction Noise Level Trends[C]// Proc of American Helicopter Society Aerodynamics, Acoustics and Test Evaluation Technical Specialists Meeting. 2002.
|
[3] |
GENNARETTI M, BERNARDINI G. Novel boundary integral formulation for blade-vortex interaction aerodynamics of helicopter rotors[J]. AIAA Journal, 2007, 45(6): 1169–1176. doi: 10.2514/1.18383
|
[4] |
FOGARTY D E, WILBUR W L, SEKULA M K. Prediction of BVI noise for an active twist rotor using a loosely coupled CFD/CSD method and comparison to experimental data[R]// NF1676L-14452, 2012.
|
[5] |
史勇杰, 苏大成, 徐国华. 桨叶气动外形对直升机桨–涡干扰噪声影响研究[J]. 南京航空航天大学学报, 2015, 47(2): 235–242. DOI: 10.16356/j.1005-2615.2015.02.009
SHI Y J, SU D C, XU G H. Research on influence of shape parameters on blade-vortex interaction noise of helicopter rotor[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2015, 47(2): 235–242. doi: 10.16356/j.1005-2615.2015.02.009
|
[6] |
史勇杰, 徐国华, 王菲. 直升机旋翼桨–涡干扰脉冲噪声传播特性研究[J]. 南京航空航天大学学报, 2014, 46(2): 212–217.
SHI Y J, XU G H, WANG F. Propagation characteristics of helicopter rotor blade-vortex interaction noise[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2014, 46(2): 212–217.
|
[7] |
王菲, 徐国华, 胡志远. 大气环境对直升机旋翼桨–涡干扰噪声辐射特性的影响[J]. 南京航空航天大学学报, 2020, 52(2): 304–310.
WANG F, XU G H, HU Z Y. Effects of atmospheric environment on helicopter blade-vortex interaction noise radiation characteristics[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2020, 52(2): 304–310.
|
[8] |
BROOKS T F, JOLLY R J, MARCOLINI M A. Determination of noise source contributions using scaled model rotor acoustic data[R]. NASATP-2825, 1998.
|
[9] |
HELLER H, SPLETTSTOESSER W, KLOEPPEL V, et al. HELINOISE—The European Community rotor acoustics research program[C]//Proc of the 15th Aeroacoustics Conference. 1993. doi: 10.2514/6.1993-4358
|
[10] |
SPLETTSTOESSER W R, NIESL G, CENEDESE F, et al. Experimental results of the European HELINOISE aeroacoustic rotor test[J]. Journal of the American Helicopter Society, 1995, 40(2): 3–14. doi: 10.4050/jahs.40.2.3
|
[11] |
HELLER H, BUCHHOLZ H, SCHULTZ K, et al. Helicopter rotor blade aeroacoustics: a comparison of model-scale wind tunnel and full-scale flight test results [C]// Proc of 20th ICAS Congress. 1996.
|
[12] |
YU Y H, GMELIN B, HELLER H, et al. HHC aeroacoustics rotor test at the DNW—the joint German/French/US HART project[C]. Proceedings of the 20th European Rotorcraft Forum. 1994.
|
[13] |
SPLETTSTOESSER W R, KUBE R, WAGNER W, et al. Key results from a higher harmonic control aeroacoustic rotor test (HART)[J]. Journal of the American Helicopter Society, 1997, 42(1): 58–78. doi: 10.4050/jahs.42.58
|
[14] |
YU Y H, TUNG C, VAN DER WALL B G. The HART-II Test: Rotor Wakes and Aeroacoustics with Higher-Harmonic Pitch Control (HHC) Inputs —The Joint German/French/Dutch/US Project[C]//Proc of 58th Annual Forum of the American Helicopter Society. 2002.
|
[15] |
VAN DER WALL B G, BURLEY C L, YU Y, et al. The HART II test - measurement of helicopter rotor wakes[J]. Aerospace Science and Technology, 2004, 8(4): 273–284. doi: 10.1016/j.ast.2004.01.001
|
[16] |
JAYARAMAN B, WISSINK A, LIM J, et al. Helios prediction of blade-vortex interaction and wake of the HART II rotor[C]//Proc of the 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, Tennessee. 2012: 714. doi: 10.2514/6.2012-714
|
[17] |
ARUN KUMAR A, VISWAMURTHY S R, GANGULI R. Correlation of helicopter rotor aeroelastic response with HART-II wind tunnel test data[J]. Aircraft Engineering and Aerospace Technology, 2010, 82(4): 237–248. doi: 10.1108/00022661011082713
|
[18] |
YIN J P, WALL B V D, OERLEMANS S. Representative test results from HeliNOVI aeroacoustic main rotor/tail rotor/fuselage test in DNW[C]// Proc of 31th European Rotercraft Forum. 2005.
|
[19] |
YIN J P, A DUMMEL, D FALCHERO. Analysis of Tail Rotor noise reduction benefits using HELINOVI aeroacoustic main/tail rotor test and posttest prediction results[C]// Proc of 32th European Rotercraft Forum. 2006.
|
[20] |
徐国华, 高正. 悬停状态下模型旋翼噪声试验的初步研究[J]. 空气动力学学报, 1996(1): 68–72.
XU G H, GAO Z. A preliminary investigation of noise experiment for helicopter model rotor in hover[J]. Acta Aerodynamica Sinica, 1996(1): 68–72.
|
[21] |
曹亚雄, 樊枫, 林永峰, 等. 带先进桨尖的模型旋翼悬停噪声计算与试验[J]. 南京航空航天大学学报, 2016, 48(2): 180–185. DOI: 10.16356/j.1005-2615.2016.02.005
CAO Y X, FAN F, LIN Y F, et al. Numerical calculations and test research on aeroacoustics characteristics of model rotors with advanced blade tip in hover[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2016, 48(2): 180–185. doi: 10.16356/j.1005-2615.2016.02.005
|
[22] |
刘正江, 黄建萍, 陈焕, 等. 旋翼桨涡干扰噪声特性试验技术研究[J]. 直升机技术, 2019(1): 43–47,42. DOI: 10.3969/j.issn.1673-1220.2019.01.010
LIU Z J, HUANG J P, CHEN H, et al. Study on characteristic of rotor-blade vortex interaction noise[J]. Helicopter Technique, 2019(1): 43–47,42. doi: 10.3969/j.issn.1673-1220.2019.01.010
|
[23] |
唐朝, 招启军, 王博, 等. 用于BVI噪声试验的新型涡发生器设计与分析[J]. 南京航空航天大学学报, 2018, 50(2): 157–166. DOI: 10.16356/j.1005-2615.2018.02.002
TANG C, ZHAO Q J, WANG B, et al. Design and analysis of new type vortex generator for BVI noise experiment[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2018, 50(2): 157–166. doi: 10.16356/j.1005-2615.2018.02.002
|
[24] |
HEYSON H H. Linearized theory of wind-tunnel jet-boundary corrections and ground effect for VTOL-STOL aircraft [R]. NASA TR R-124, 1962.
|
[25] |
HEYSON H H. FORTRAN programs for calculating wind-tunnel boundary interference [R]. NASA TM X-1740, 1969.
|
[26] |
HEYSON H H. Use of superposition in digital computers to obtain wind tunnel interference factors for arbitrary configurations, with particular reference to V/STOL models[R]. NASA TR R-302, 1969.
|
[27] |
LANGER H, PETERSON R L, MAIER T H. An experimental evaluation of wind tunnel wall correction methods for helicopter performance [C]// Proceedings of the AHS 52nd Annual Forum. 1996.
|
[28] |
李元首, 陈宝, 张雪, 等. 传声器阵列校准技术研究[J]. 现代电子技术, 2014, 37(24): 94–97. DOI: 10.3969/j.issn.1004-373X.2014.24.026
LI Y S, CHEN B, ZHANG X, et al. Calibration technology of microphone array[J]. Modern Electronics Technique, 2014, 37(24): 94–97. doi: 10.3969/j.issn.1004-373X.2014.24.026
|
[1] | DU Baihe, ZHANG Songhe, GE Qiang, WANG Maogang. Study on flow field characteristics of inert gas-air hybrid arc[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(5): 69-75. DOI: 10.11729/syltlx20210052 |
[2] | ZHANG Xinghuan, ZHANG Pingtao, PENG Bo, YI Xian. Prediction of icing wind tunnel temperature field with machine learning[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(5): 8-15. DOI: 10.11729/syltlx20210196 |
[3] | Fu Cheng, Zhao Bo, Xu Dachuan, Liao Daxiong, Pei Haitao, Zhu Bo, Qin Honggang. Investigation on flow turbulent characteristics of plate-fin and tube-fin heat exchanger[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(6): 22-27. DOI: 10.11729/syltlx20190036 |
[4] | Wang Feng, Xu Jinglei, Wang Yangsheng. Study of flow field characteristics of an over-under TBCC exhaust system during mode transition process[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 68-75. DOI: 10.11729/syltlx20190037 |
[5] | Gong Jishuang, Zhou Lin, Zhang Yining, Teng Honghui. Investigation on flow field structure of rotating detonation using the method of characteristics[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(1): 89-96. DOI: 10.11729/syltlx20180072 |
[6] | Liao Daxiong, Chen Jiming, Zheng Juan, Chen Qin, Pei Haitao, Wu Shenghao. General performance of 0.6m continuous transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6): 88-93. DOI: 10.11729/syltlx20170086 |
[7] | Yang Hong, Luo Yue, Wu Dong, Zhou Ping. Study on supersonic turbulence plate ablation flow field in arc heater[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(4): 72-77. DOI: 10.11729/syltlx20170181 |
[8] | Yu Mingxing, Bai Shuxin, Xu Xiaoliang, Cao Zhanwei. Research on method for evaluating the thermal protective performance of non-catalysis material in non-equilibrium flow[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(4): 84-89. DOI: 10.11729/syltlx20170084 |
[9] | Luo Yue, Zhou Wei, Yang Hong, Chen Wei. CFD analysis of the arc heater turbulent flow field of flat plate testing[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(2): 86-92. DOI: 10.11729/syltlx20160088 |
[10] | Yang Bo, Liu Sen. Investigation of the performance of flow field in supersonic/hypersonic wind tunnel with different test section geometry configurations[J]. Journal of Experiments in Fluid Mechanics, 2014, (4): 59-64. DOI: 10.11729/syltlx20130023 |
1. |
韩笑,高创,郑怡彤,刘小兵. 切角凹槽矩形截面桥塔的气动特性试验研究. 石家庄铁道大学学报(自然科学版). 2024(01): 9-15+23 .
![]() | |
2. |
白桦,刘博祥,姬乃川,李加武. 节段模型二元端板合理尺寸估算方法. 振动与冲击. 2023(02): 312-320 .
![]() | |
3. |
王仰雪,刘庆宽,靖洪淼,李震,孙一飞. 倾斜栏杆对流线型箱梁涡激振动性能影响的试验研究. 振动与冲击. 2023(06): 232-239+254 .
![]() | |
4. |
于畅,仇法梅,田学东,杨群,刘小兵. 圆角矩形柱平均气动力特性的雷诺数效应试验研究. 石家庄铁道大学学报(自然科学版). 2023(02): 29-34 .
![]() | |
5. |
杨群,于畅,刘小兵,刘庆宽. 不同圆角率的方形断面斯特罗哈数的雷诺数效应研究. 振动与冲击. 2023(11): 223-231 .
![]() | |
6. |
刘庆宽,王仰雪,孙一飞,李震,韩原,靖洪淼. 栏杆高度对流线型箱梁涡振性能影响的试验研究. 湖南大学学报(自然科学版). 2023(07): 140-150 .
![]() | |
7. |
刘路路,杨皓然,邹云峰,何旭辉,韩艳,陈志强. 公铁同层双幅非对称主梁气动干扰特性研究. 铁道科学与工程学报. 2023(10): 3861-3872 .
![]() | |
8. |
杨群,于畅,于文文,刘小兵. 圆角方柱气动特性的风洞试验研究. 振动与冲击. 2023(24): 59-68 .
![]() | |
9. |
韩振,李波,甄伟,杨庆山,田玉基. 宽厚比为5的超高层建筑风荷载特性研究. 哈尔滨工程大学学报. 2022(02): 196-202 .
![]() | |
10. |
张庆华,马文勇,杨杰,张彦,周帅伟. 不同风倾角下典型等边角钢静风力风洞试验研究. 振动工程学报. 2022(02): 277-283 .
![]() | |
11. |
白桦,王涵,姬乃川,李加武. 节段模型长宽比对风洞测力试验及计算分析的影响. 中国公路学报. 2022(08): 202-212 .
![]() | |
12. |
杨群,刘庆宽,韩瑞,刘小兵. 不同圆角率的方形断面气动特性的雷诺数效应. 振动与冲击. 2020(04): 150-156 .
![]() | |
13. |
沈国辉,姚剑锋,郭勇,邢月龙,楼文娟. 直径30 cm圆柱的气动力参数和绕流特性研究. 振动与冲击. 2020(06): 22-28 .
![]() | |
14. |
温青,池俊豪,华旭刚,王修勇,孙洪鑫. 端部条件和展弦比对矩形断面节段模型气动力特征的影响. 实验流体力学. 2020(04): 36-43 .
![]() | |
15. |
任若松,梁新华,刘小兵,马文勇,刘庆宽. 准流线型桥梁断面气动力特性的雷诺数效应研究. 工程力学. 2020(S1): 139-144+167 .
![]() | |
16. |
李海飞,梁新华,孙一飞,崔会敏,刘庆宽. 流线型桥梁断面表面脉动风荷载特性研究. 工程力学. 2020(S1): 242-248+260 .
![]() | |
17. |
马文勇,汪冠亚,郑熙,陈铁,李智,张程远,方平治. 端部状态对斜置圆柱气动力分布的影响. 实验流体力学. 2019(02): 43-50 .
![]() | |
31. |
杨群,刘庆宽,孙亚松,刘小兵. 圆角方形断面气动特性试验. 振动.测试与诊断. 2020(01): 140-147+208 .
![]() |