LIU X N, LIU S T, ZHOU G C, et al. Wind tunnel test research on the characteristics of rotor blade-vortex interaction noise[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(3): 84-91. DOI: 10.11729/syltlx20210190
Citation: LIU X N, LIU S T, ZHOU G C, et al. Wind tunnel test research on the characteristics of rotor blade-vortex interaction noise[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(3): 84-91. DOI: 10.11729/syltlx20210190

Wind tunnel test research on the characteristics of rotor blade-vortex interaction noise

More Information
  • Received Date: December 21, 2021
  • Revised Date: February 04, 2022
  • Accepted Date: March 16, 2022
  • The propagation characteristics of the blade–vortex interaction (BVI) noise were tested in the FL–10 wind tunnel of AVIC Aerodynamics Research Institute. The aerodynamic noise of climb, level flight and descent at medium forward speed was measured on a 40% scale model of BO−105 main rotor. Firstly, the “Heyson” wall interference correction method was used to determine the descent angle of the rotor in the wind tunnel, and the complete noise radiation field under the rotor tip–path–plane was obtained through the movement of the measurement array in the airflow. Furthermore, the BVI noise characteristics of the rotor under different flight condition were studied, and the sound pressure time history, spectrum and sound pressure level contour were given. The results indicate that the BVI phenomena occur on both the advancing and retreating side under the descent flight condition. The noise has strong directivity, and radiates toward upstream under the rotor disk toward the advancing side and the downstream on the retreating side.
  • [1]
    YU Y H. Rotor blade–vortex interaction noise[J]. Progress in Aerospace Sciences, 2000, 36(2): 97–115. doi: 10.1016/S0376-0421(99)00012-3
    [2]
    Du Vall T, Sim B, Schmitz F. Cabin versus Far-Field Blade- Vortex Interaction Noise Level Trends[C]// Proc of American Helicopter Society Aerodynamics, Acoustics and Test Evaluation Technical Specialists Meeting. 2002.
    [3]
    GENNARETTI M, BERNARDINI G. Novel boundary integral formulation for blade-vortex interaction aerodynamics of helicopter rotors[J]. AIAA Journal, 2007, 45(6): 1169–1176. doi: 10.2514/1.18383
    [4]
    FOGARTY D E, WILBUR W L, SEKULA M K. Prediction of BVI noise for an active twist rotor using a loosely coupled CFD/CSD method and comparison to experimental data[R]// NF1676L-14452, 2012.
    [5]
    史勇杰, 苏大成, 徐国华. 桨叶气动外形对直升机桨–涡干扰噪声影响研究[J]. 南京航空航天大学学报, 2015, 47(2): 235–242. DOI: 10.16356/j.1005-2615.2015.02.009

    SHI Y J, SU D C, XU G H. Research on influence of shape parameters on blade-vortex interaction noise of helicopter rotor[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2015, 47(2): 235–242. doi: 10.16356/j.1005-2615.2015.02.009
    [6]
    史勇杰, 徐国华, 王菲. 直升机旋翼桨–涡干扰脉冲噪声传播特性研究[J]. 南京航空航天大学学报, 2014, 46(2): 212–217.

    SHI Y J, XU G H, WANG F. Propagation characteristics of helicopter rotor blade-vortex interaction noise[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2014, 46(2): 212–217.
    [7]
    王菲, 徐国华, 胡志远. 大气环境对直升机旋翼桨–涡干扰噪声辐射特性的影响[J]. 南京航空航天大学学报, 2020, 52(2): 304–310.

    WANG F, XU G H, HU Z Y. Effects of atmospheric environment on helicopter blade-vortex interaction noise radiation characteristics[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2020, 52(2): 304–310.
    [8]
    BROOKS T F, JOLLY R J, MARCOLINI M A. Determination of noise source contributions using scaled model rotor acoustic data[R]. NASATP-2825, 1998.
    [9]
    HELLER H, SPLETTSTOESSER W, KLOEPPEL V, et al. HELINOISE—The European Community rotor acoustics research program[C]//Proc of the 15th Aeroacoustics Conference. 1993. doi: 10.2514/6.1993-4358
    [10]
    SPLETTSTOESSER W R, NIESL G, CENEDESE F, et al. Experimental results of the European HELINOISE aeroacoustic rotor test[J]. Journal of the American Helicopter Society, 1995, 40(2): 3–14. doi: 10.4050/jahs.40.2.3
    [11]
    HELLER H, BUCHHOLZ H, SCHULTZ K, et al. Helicopter rotor blade aeroacoustics: a comparison of model-scale wind tunnel and full-scale flight test results [C]// Proc of 20th ICAS Congress. 1996.
    [12]
    YU Y H, GMELIN B, HELLER H, et al. HHC aeroacoustics rotor test at the DNW—the joint German/French/US HART project[C]. Proceedings of the 20th European Rotorcraft Forum. 1994.
    [13]
    SPLETTSTOESSER W R, KUBE R, WAGNER W, et al. Key results from a higher harmonic control aeroacoustic rotor test (HART)[J]. Journal of the American Helicopter Society, 1997, 42(1): 58–78. doi: 10.4050/jahs.42.58
    [14]
    YU Y H, TUNG C, VAN DER WALL B G. The HART-II Test: Rotor Wakes and Aeroacoustics with Higher-Harmonic Pitch Control (HHC) Inputs —The Joint German/French/Dutch/US Project[C]//Proc of 58th Annual Forum of the American Helicopter Society. 2002.
    [15]
    VAN DER WALL B G, BURLEY C L, YU Y, et al. The HART II test - measurement of helicopter rotor wakes[J]. Aerospace Science and Technology, 2004, 8(4): 273–284. doi: 10.1016/j.ast.2004.01.001
    [16]
    JAYARAMAN B, WISSINK A, LIM J, et al. Helios prediction of blade-vortex interaction and wake of the HART II rotor[C]//Proc of the 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, Tennessee. 2012: 714. doi: 10.2514/6.2012-714
    [17]
    ARUN KUMAR A, VISWAMURTHY S R, GANGULI R. Correlation of helicopter rotor aeroelastic response with HART-II wind tunnel test data[J]. Aircraft Engineering and Aerospace Technology, 2010, 82(4): 237–248. doi: 10.1108/00022661011082713
    [18]
    YIN J P, WALL B V D, OERLEMANS S. Representative test results from HeliNOVI aeroacoustic main rotor/tail rotor/fuselage test in DNW[C]// Proc of 31th European Rotercraft Forum. 2005.
    [19]
    YIN J P, A DUMMEL, D FALCHERO. Analysis of Tail Rotor noise reduction benefits using HELINOVI aeroacoustic main/tail rotor test and posttest prediction results[C]// Proc of 32th European Rotercraft Forum. 2006.
    [20]
    徐国华, 高正. 悬停状态下模型旋翼噪声试验的初步研究[J]. 空气动力学学报, 1996(1): 68–72.

    XU G H, GAO Z. A preliminary investigation of noise experiment for helicopter model rotor in hover[J]. Acta Aerodynamica Sinica, 1996(1): 68–72.
    [21]
    曹亚雄, 樊枫, 林永峰, 等. 带先进桨尖的模型旋翼悬停噪声计算与试验[J]. 南京航空航天大学学报, 2016, 48(2): 180–185. DOI: 10.16356/j.1005-2615.2016.02.005

    CAO Y X, FAN F, LIN Y F, et al. Numerical calculations and test research on aeroacoustics characteristics of model rotors with advanced blade tip in hover[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2016, 48(2): 180–185. doi: 10.16356/j.1005-2615.2016.02.005
    [22]
    刘正江, 黄建萍, 陈焕, 等. 旋翼桨涡干扰噪声特性试验技术研究[J]. 直升机技术, 2019(1): 43–47,42. DOI: 10.3969/j.issn.1673-1220.2019.01.010

    LIU Z J, HUANG J P, CHEN H, et al. Study on characteristic of rotor-blade vortex interaction noise[J]. Helicopter Technique, 2019(1): 43–47,42. doi: 10.3969/j.issn.1673-1220.2019.01.010
    [23]
    唐朝, 招启军, 王博, 等. 用于BVI噪声试验的新型涡发生器设计与分析[J]. 南京航空航天大学学报, 2018, 50(2): 157–166. DOI: 10.16356/j.1005-2615.2018.02.002

    TANG C, ZHAO Q J, WANG B, et al. Design and analysis of new type vortex generator for BVI noise experiment[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2018, 50(2): 157–166. doi: 10.16356/j.1005-2615.2018.02.002
    [24]
    HEYSON H H. Linearized theory of wind-tunnel jet-boundary corrections and ground effect for VTOL-STOL aircraft [R]. NASA TR R-124, 1962.
    [25]
    HEYSON H H. FORTRAN programs for calculating wind-tunnel boundary interference [R]. NASA TM X-1740, 1969.
    [26]
    HEYSON H H. Use of superposition in digital computers to obtain wind tunnel interference factors for arbitrary configurations, with particular reference to V/STOL models[R]. NASA TR R-302, 1969.
    [27]
    LANGER H, PETERSON R L, MAIER T H. An experimental evaluation of wind tunnel wall correction methods for helicopter performance [C]// Proceedings of the AHS 52nd Annual Forum. 1996.
    [28]
    李元首, 陈宝, 张雪, 等. 传声器阵列校准技术研究[J]. 现代电子技术, 2014, 37(24): 94–97. DOI: 10.3969/j.issn.1004-373X.2014.24.026

    LI Y S, CHEN B, ZHANG X, et al. Calibration technology of microphone array[J]. Modern Electronics Technique, 2014, 37(24): 94–97. doi: 10.3969/j.issn.1004-373X.2014.24.026
  • Related Articles

    [1]DU Baihe, ZHANG Songhe, GE Qiang, WANG Maogang. Study on flow field characteristics of inert gas-air hybrid arc[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(5): 69-75. DOI: 10.11729/syltlx20210052
    [2]ZHANG Xinghuan, ZHANG Pingtao, PENG Bo, YI Xian. Prediction of icing wind tunnel temperature field with machine learning[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(5): 8-15. DOI: 10.11729/syltlx20210196
    [3]Fu Cheng, Zhao Bo, Xu Dachuan, Liao Daxiong, Pei Haitao, Zhu Bo, Qin Honggang. Investigation on flow turbulent characteristics of plate-fin and tube-fin heat exchanger[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(6): 22-27. DOI: 10.11729/syltlx20190036
    [4]Wang Feng, Xu Jinglei, Wang Yangsheng. Study of flow field characteristics of an over-under TBCC exhaust system during mode transition process[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 68-75. DOI: 10.11729/syltlx20190037
    [5]Gong Jishuang, Zhou Lin, Zhang Yining, Teng Honghui. Investigation on flow field structure of rotating detonation using the method of characteristics[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(1): 89-96. DOI: 10.11729/syltlx20180072
    [6]Liao Daxiong, Chen Jiming, Zheng Juan, Chen Qin, Pei Haitao, Wu Shenghao. General performance of 0.6m continuous transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6): 88-93. DOI: 10.11729/syltlx20170086
    [7]Yang Hong, Luo Yue, Wu Dong, Zhou Ping. Study on supersonic turbulence plate ablation flow field in arc heater[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(4): 72-77. DOI: 10.11729/syltlx20170181
    [8]Yu Mingxing, Bai Shuxin, Xu Xiaoliang, Cao Zhanwei. Research on method for evaluating the thermal protective performance of non-catalysis material in non-equilibrium flow[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(4): 84-89. DOI: 10.11729/syltlx20170084
    [9]Luo Yue, Zhou Wei, Yang Hong, Chen Wei. CFD analysis of the arc heater turbulent flow field of flat plate testing[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(2): 86-92. DOI: 10.11729/syltlx20160088
    [10]Yang Bo, Liu Sen. Investigation of the performance of flow field in supersonic/hypersonic wind tunnel with different test section geometry configurations[J]. Journal of Experiments in Fluid Mechanics, 2014, (4): 59-64. DOI: 10.11729/syltlx20130023
  • Cited by

    Periodical cited type(18)

    1. 韩笑,高创,郑怡彤,刘小兵. 切角凹槽矩形截面桥塔的气动特性试验研究. 石家庄铁道大学学报(自然科学版). 2024(01): 9-15+23 .
    2. 白桦,刘博祥,姬乃川,李加武. 节段模型二元端板合理尺寸估算方法. 振动与冲击. 2023(02): 312-320 .
    3. 王仰雪,刘庆宽,靖洪淼,李震,孙一飞. 倾斜栏杆对流线型箱梁涡激振动性能影响的试验研究. 振动与冲击. 2023(06): 232-239+254 .
    4. 于畅,仇法梅,田学东,杨群,刘小兵. 圆角矩形柱平均气动力特性的雷诺数效应试验研究. 石家庄铁道大学学报(自然科学版). 2023(02): 29-34 .
    5. 杨群,于畅,刘小兵,刘庆宽. 不同圆角率的方形断面斯特罗哈数的雷诺数效应研究. 振动与冲击. 2023(11): 223-231 .
    6. 刘庆宽,王仰雪,孙一飞,李震,韩原,靖洪淼. 栏杆高度对流线型箱梁涡振性能影响的试验研究. 湖南大学学报(自然科学版). 2023(07): 140-150 .
    7. 刘路路,杨皓然,邹云峰,何旭辉,韩艳,陈志强. 公铁同层双幅非对称主梁气动干扰特性研究. 铁道科学与工程学报. 2023(10): 3861-3872 .
    8. 杨群,于畅,于文文,刘小兵. 圆角方柱气动特性的风洞试验研究. 振动与冲击. 2023(24): 59-68 .
    9. 韩振,李波,甄伟,杨庆山,田玉基. 宽厚比为5的超高层建筑风荷载特性研究. 哈尔滨工程大学学报. 2022(02): 196-202 .
    10. 张庆华,马文勇,杨杰,张彦,周帅伟. 不同风倾角下典型等边角钢静风力风洞试验研究. 振动工程学报. 2022(02): 277-283 .
    11. 白桦,王涵,姬乃川,李加武. 节段模型长宽比对风洞测力试验及计算分析的影响. 中国公路学报. 2022(08): 202-212 .
    12. 杨群,刘庆宽,韩瑞,刘小兵. 不同圆角率的方形断面气动特性的雷诺数效应. 振动与冲击. 2020(04): 150-156 .
    13. 沈国辉,姚剑锋,郭勇,邢月龙,楼文娟. 直径30 cm圆柱的气动力参数和绕流特性研究. 振动与冲击. 2020(06): 22-28 .
    14. 温青,池俊豪,华旭刚,王修勇,孙洪鑫. 端部条件和展弦比对矩形断面节段模型气动力特征的影响. 实验流体力学. 2020(04): 36-43 . 本站查看
    15. 任若松,梁新华,刘小兵,马文勇,刘庆宽. 准流线型桥梁断面气动力特性的雷诺数效应研究. 工程力学. 2020(S1): 139-144+167 .
    16. 李海飞,梁新华,孙一飞,崔会敏,刘庆宽. 流线型桥梁断面表面脉动风荷载特性研究. 工程力学. 2020(S1): 242-248+260 .
    17. 马文勇,汪冠亚,郑熙,陈铁,李智,张程远,方平治. 端部状态对斜置圆柱气动力分布的影响. 实验流体力学. 2019(02): 43-50 . 本站查看
    31. 杨群,刘庆宽,孙亚松,刘小兵. 圆角方形断面气动特性试验. 振动.测试与诊断. 2020(01): 140-147+208 .

    Other cited types(16)

Catalog

    Article Metrics

    Article views (283) PDF downloads (48) Cited by(34)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close