XIONG Y D,YU T,XUE T,et al. Progress on focused laser differential interferometry in measuring supersonic/hypersonic flow field[J]. Journal of Experiments in Fluid Mechanics, 2022,36(2):9-20.. DOI: 10.11729/syltlx20210126
Citation: XIONG Y D,YU T,XUE T,et al. Progress on focused laser differential interferometry in measuring supersonic/hypersonic flow field[J]. Journal of Experiments in Fluid Mechanics, 2022,36(2):9-20.. DOI: 10.11729/syltlx20210126

Progress on focused laser differential interferometry in measuring supersonic/hypersonic flow field

More Information
  • Received Date: September 21, 2021
  • Revised Date: November 02, 2021
  • Accepted Date: November 17, 2021
  • Available Online: January 06, 2022
  • As a nonintrusive and high spatial/temporal resolution testing method, Focused Laser Differential Interferometry (FLDI) is very suitable for use in extreme experimental environment, such as hypersonic wind tunnel. Starting from the typical composition of the optical path, the principle of FLDI and the spatial filtering characteristics are introduced. Thereafter, a series of recent improvements based on typical FLDI is reviewed. Those improvements were implemented to meet different research needs. This is followed by applications and conclusions of FLDI in the field of hypersonic flow field measurement, including hypersonic freestream disturbance, hypersonic boundary layer transition, and supersonic jet noise. This review shows the potential of FLDI in supersonic and hypersonic flow field measurement, and it may provide reference for the follow-up improvement of FLDI testing technology and related precision measurement of hypersonic flow field.
  • [1]
    FEDOROV A. Transition and stability of high-speed bound-ary layers[J]. Annual Review of Fluid Mechanics,2011,43(1):79-95. doi: 10.1146/annurev-fluid-122109-160750
    [2]
    SCHNEIDER S P. Hypersonic laminar-turbulent transition on circular cones and scramjet forebodies[J]. Progress in Aerospace Sciences,2004,40(1-2):1-50. doi: 10.1016/j.paerosci.2003.11.001
    [3]
    陈坚强,涂国华,张毅锋,等. 高超声速边界层转捩研究现状与发展趋势[J]. 空气动力学学报,2017,35(3):311-337. DOI: 10.7638/kqdlxxb-2017.0030

    CHEN J Q,TU G H,ZHANG Y F,et al. Hypersnonic boundary layer transition: what we know,where shall we go[J]. Acta Aerodynamica Sinica,2017,35(3):311-337. doi: 10.7638/kqdlxxb-2017.0030
    [4]
    BERTIN J J,CUMMINGS R M. Fifty years of hypersonics: where we've been,where we're going[J]. Progress in Aero-space Sciences,2003,39(6-7):511-536. doi: 10.1016/S0376-0421(03)00079-4
    [5]
    BERTIN J J,CUMMINGS R M. Critical hypersonic aerothermodynamic phenomena[J]. Annual Review of Fluid Mechanics,2006,38(1):129-157. doi: 10.1146/annurev.fluid.38.050304.092041
    [6]
    MORTENSEN C H,ZHONG X L. Real-gas and surface-ablation effects on hypersonic boundary-layer instability over a blunt cone[J]. AIAA Journal,2016,54(3):980-998. doi: 10.2514/1.j054404
    [7]
    吴正园,莫凡,高振勋,等. 湍流边界层与高温气体效应耦合的直接数值模拟[J]. 空气动力学学报,2020,38(6):1111-1119,1128. DOI: 10.7638/kqdlxxb-2020.0132

    WU Z Y,MO F,GAO Z X,et al. Direct numerical simulation of turbulent and high-temperature gas effect coupled flow[J]. Acta Aerodynamica Sinica,2020,38(6):1111-1119,1128. doi: 10.7638/kqdlxxb-2020.0132
    [8]
    BONNET J P,GRÉSILLON D,TARAN J P. Nonintrusive measurements for high-speed,supersonic,and hypersonic flows[J]. Annual Review of Fluid Mechanics,1998,30(1):231-273. doi: 10.1146/annurev.fluid.30.1.231
    [9]
    MILES R B. Optical diagnostics for high-speed flows[J]. Progress in Aerospace Sciences,2015,72:30-36. doi: 10.1016/j.paerosci.2014.09.007
    [10]
    DANEHY P M, WEISBERGER J, JOHANSEN C, et al. Non-intrusive measurement techniques for flow characteri-zation of hypersonic wind tunnels[C]//Proc of the Flow Characterization and Modeling of Hypersonic Wind Tunnels(NATO Science and Technology Organization Lecture Series STO-AVT 325). 2018.
    [11]
    SMEETS G. Laser interferometer for high sensitivity measurements on transient phase objects[J]. IEEE Transac-tions on Aerospace and Electronic Systems,1972,AES-8(2):186-190. doi: 10.1109/TAES.1972.309488
    [12]
    SMEETS G. Flow diagnostics by laser interferometry[J]. IEEE Transactions on Aerospace and Electronic Systems,1977,AES-13(2):82-90. doi: 10.1109/taes.1977.308441
    [13]
    PARZIALE N J,SHEPHERD J E,HORNUNG H G. Differential interferometric measurement of instability in a hypervelocity boundary layer[J]. AIAA Journal,2012,51(3):750-754. doi: 10.2514/1.J052013
    [14]
    XIONG Y D,YU T,LIN L Q,et al. Nonlinear instability characterization of hypersonic laminar boundary layer[J]. AIAA Journal,2020,58(12):5254-5263. doi: 10.2514/1.J059263
    [15]
    YU T,XIONG Y D,ZHAO J Q,et al. Application of focused laser differential interferometer to hypersonic boundary-layer instability study[J]. Chinese Journal of Aeronautics,2021,34(5):17-26. doi: 10.1016/j.cja.2020.10.019
    [16]
    CHOU A, LEIDY A, KING R A, et al. Measurements of freestream fluctuations in the NASA langley 20-inch Mach 6 tunnel[C]//Proc of the 2018 Fluid Dynamics Conference. 2018. doi:10.2514/6.2018-3073
    [17]
    BIRCH B,BUTTSWORTH D,ZANDER F. Measurements of freestream density fluctuations in a hypersonic wind tunnel[J]. Experiments in Fluids,2020,61(7):158. doi: 10.1007/s00348-020-02992-w
    [18]
    FULGHUM M R. Turbulence measurements in high speed wind tunnels using focused laser differential interferometry[D]. Pennsylvania: The Pennsylvania State University, 2014.
    [19]
    SCHMIDT B E,SHEPHERD J E. Analysis of focused laser differential interferometry[J]. Applied Optics,2015,54(28):8459-8472. doi: 10.1364/AO.54.008459
    [20]
    PARZIALE N, SHEPHERD J, HORNUNG H. Reflected shock tunnel noise measurement by focused differential interferometry[C]//Proc of the 42nd AIAA Fluid Dynamics Conference and Exhibit. 2012. doi: 10.2514/6.2012-3261
    [21]
    余涛,张威,张毅锋,等. 一种非介入式高超声速边界层不稳定波的测量方法[J]. 实验流体力学,2019,33(5):70-75. DOI: 10.11729/syltlx20190076

    YU T,ZHANG W,ZHANG Y F,et al. Focused laser differential interferometry measurement of instability wave in a hypersonic boundary-layer[J]. Journal of Experiments in Fluid Mechanics,2019,33(5):70-75. doi: 10.11729/syltlx20190076
    [22]
    LAWSON J M,NEET M C,GROSSMAN I J,et al. Static and dynamic characterization of a focused laser differential interferometer[J]. Experiments in Fluids,2020,61(8):187. doi: 10.1007/s00348-020-03013-6
    [23]
    HOUPT A W, LEONOV S B. Focused laser differential interferometer for supersonic boundary layer measurements on flat plate geometries[C]//Proc of the 2018 Plasmadyna-mics and Lasers Conference. 2018. doi: 10.2514/6.2018-3434
    [24]
    HOPKINS K J,PORAT H,MCINTYRE T J,et al. Measurements and analysis of hypersonic tripped boundary layer turbulence[J]. Experiments in Fluids,2021,62(8):164. doi: 10.1007/s00348-021-03254-z
    [25]
    HOUPT A,LEONOV S. Cylindrical focused laser diffe-rential interferometer[J]. AIAA Journal,2021,59(4):1142-1150. doi: 10.2514/1.j059750
    [26]
    WEISBERGER J, BATHEL B F, JONES S B, et al. Two-point focused laser differential interferometry second-mode measurements at Mach 6[C]// Proc of the AIAA Aviation 2019 Forum. 2019. doi: 10.2514/6.2019-2903
    [27]
    BATHEL B F,WEISBERGER J M,HERRING G C,et al. Two-point, parallel-beam focused laser differential interfero-metry with a Nomarski prism[J]. Applied Optics,2020,59(2):244-252. doi: 10.1364/ao.59.000244
    [28]
    JEWELL J S, HAMEED A, PARZIALE N J, et al. Disturbance speed measurements in a circular jet via double focused laser differential interferometry[C]//Proc of the AIAA Scitech 2019 Forum. 2019. doi: 10.2514/6.2019-2293
    [29]
    WEISBERGER J M,BATHEL B F,HERRING G C,et al. Multi-point line focused laser differential interferometer for high-speed flow fluctuation measurements[J]. Applied Optics,2020,59(35):11180-11195. doi: 10.1364/ao.411006
    [30]
    WEISBERGER J M, BATHEL B F, HERRING G C, et al. Two-line focused laser differential interferometry of a flat plate boundary layer at Mach 6[C]//Proc of the AIAA Scitech 2021 Forum. 2021. doi: 10.2514/6.2021-0601
    [31]
    HAMEED A, PARZIALE N J, PAQUIN L A, et al. Spectral analysis of a hypersonic boundary layer on a right, circular cone [C]//Proc of the AIAA Scitech 2020 Forum. 2020. doi: 10.2514/6.2020-0362
    [32]
    GRAGSTON M,PRICE T,DAVENPORT K,et al. Linear array focused-laser differential interferometry for single-shot multi-point flow disturbance measurements[J]. Optics Letters,2020,46(1):154-157. doi: 10.1364/ol.412495
    [33]
    GRAGSTON M,SIDDIQUI F,SCHMISSEUR J D. Detec-tion of second-mode instabilities on a flared cone in Mach 6 quiet flow with linear array focused laser differential interferometry[J]. Experiments in Fluids,2021,62(4):81. doi: 10.1007/s00348-021-03188-6
    [34]
    LAWSON J M,AUSTIN J M. Focused laser differential inter-ferometer response to shock waves[J]. Measurement Science and Technology,2021,32(5):055203. doi: 10.1088/1361-6501/abdbd3
    [35]
    SCHNEIDER S P. Development of hypersonic quiet tunnels[J]. Journal of Spacecraft and Rockets,2008,45(4):641-664. doi: 10.2514/1.34489
    [36]
    PARZIALE N. Slender-body hypervelocity boundary-layer instability[D]. California: California Institute of Technology, 2013.
    [37]
    PARZIALE N J,SHEPHERD J E,HORNUNG H G. Free-stream density perturbations in a reflected-shock tunnel[J]. Experiments in Fluids,2014,55(2):1665. doi: 10.1007/s00348-014-1665-0
    [38]
    CERUZZI A, MCMANAMEN B, CADOU C P. Demon-stration of two-point focused laser differential interferometry(2pFLDI)in a Mach 18 flow[C]//Proc of the AIAA Scitech 2021 Forum. 2021. doi: 10.2514/6.2021-0983
    [39]
    SETTLES G S,FULGHUM M R. The focusing laser differential interferometer, an instrument for localized turbu-lence measurements in refractive flows[J]. Journal of Fluids Engineering,2016,138(10):101402. doi: 10.1115/1.4033960
    [40]
    CERUZZI A, CALLIS B, WEBER D, et al. Application of focused laser differential interferometry(FLDI) in a super-sonic boundary layer[C]//Proc of the AIAA Scitech 2020 Forum. 2020. doi: 10.2514/6.2020-1973
    [41]
    PRICE T J,GRAGSTON M,SCHMISSEUR J D,et al. Measurement of supersonic jet screech with focused laser differential interferometry[J]. Applied Optics,2020,59(28):8902-8908. doi: 10.1364/ao.402011
  • Related Articles

    [1]GAO Mingchuan, MIN Fu, XIE Zhendong, YANG Yanguang. Research on static calibration of wind tunnel balances based on improved BP neural network[J]. Journal of Experiments in Fluid Mechanics. DOI: 10.11729/syltlx20230149
    [2]KANG Jinxin, TONG Yiheng, HUANG Kejia, GUO Kangkang, FENG Songjiang. Preliminary experimental study on the crushing length of centrifugal single and double injectors liquid film[J]. Journal of Experiments in Fluid Mechanics. DOI: 10.11729/syltlx20230084
    [3]XU Yi, CHENG Yuzhu, WANG Chuan, FU Shuai, JIN Yakang, CHEN Longquan. Study on the morphology and mechanical properties of solid, liquid and gas nanoscopic soft matter in liquid phase[J]. Journal of Experiments in Fluid Mechanics. DOI: 10.11729/syltlx20230095
    [4]HE Xuzhao, ZHOU Zheng, ZHANG Juntao, HE Yuanyuan, WU Yingchuan. Mass flux measurement and comparison study of simulation and experiment on curved cone waverider forebody inlet[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(6): 18-23. DOI: 10.11729/syltlx20190095
    [5]ZHANG Haixiang, HE Feng, ZHANG Xiwen, HAO Pengfei. Experimental investigation on the dynamic behaviors of droplets impacting on ultrasonically vibrating curve surfaces[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(4): 1-8. DOI: 10.11729/syltlx20200036
    [6]Zheng Xiaogang, Li Zhonglong, Li Yiqing, Zhang Xu, Zhu Chengxiang, You Yancheng. Integrated design and experimental research for curved fore-body and 3D inward turning inlet[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(5): 28-35, 48. DOI: 10.11729/syltlx20190019
    [7]Chang Siyuan, Zou Dongyang, Liu Jun. Simulating hypersonic projectile launching process in the ballistic range by Adaptive Discontinuity Fitting solver technique[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(2): 23-29. DOI: 10.11729/syltlx20180104
    [8]Wei Feng, Zhou Zheng, Li Li, He Xuzhao. Experimental studies of Curved Cone Waverider forebody Inlet(CCWI) at low Mach number range[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(6): 1-7. DOI: 10.11729/syltlx20170049
    [9]Jiang Junze, Zhang Weiming, Yong Qiwei, Jiang Ming. Experimental study on characteristics of the liquid holdup during mobile pipe draining[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(4): 48-55. DOI: 10.11729/syltlx20150152
    [10]LI Guo-shuai, FAN Zhao-lin, MA Hu-sheng, ZHOU Qiang, XIONG Jian, XUE Sheng-wei. Theoretical study of pressure-sensitive paint technique based on stern-volmer relation[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(3): 76-80. DOI: 10.3969/j.issn.1672-9897.2012.03.014
  • Cited by

    Periodical cited type(3)

    1. 罗杰,马昊军,王国林,肖学仁. 激光诱导荧光技术在高焓空气氮原子测量中的应用. 光谱学与光谱分析. 2021(07): 2135-2141 .
    2. 闫楠楠. 原子荧光技术在水环境检测中的应用研究. 资源节约与环保. 2021(10): 51-53 .
    3. 乐吴生,黄生洪. 高热流条件下翅片凹腔内超汽化换热的微距PLIF观测. 实验力学. 2019(04): 591-599 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (2659) PDF downloads (155) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close