Citation: | HAO D Z, JIANG N, TANG Z Q, et al. Experimental study on the effect of angle of attack on airfoil boundary layer[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(2): 16-24. DOI: 10.11729/syltlx20210117 |
[1] |
李锋, 白鹏, 石文, 等. 微型飞行器低雷诺数空气动力学[J]. 力学进展, 2007, 37(2): 257–268. DOI: 10.3321/j.issn:1000-0992.2007.02.009
LI F, BAI P, SHI W, et al. Low Reynolds number aerodynamics of micro air vehicles[J]. Advances in Mecha-nics, 2007, 37(2): 257–268. doi: 10.3321/j.issn:1000-0992.2007.02.009
|
[2] |
LIN J C M, PAULEY L L. Low-Reynolds-number separation on an airfoil[J]. AIAA Journal, 1996, 34(8): 1570–1577. doi: 10.2514/3.13273
|
[3] |
LISSAMAN P S. Low-Reynolds-number airfoils[J]. Annual Review of Fluid Mechanics, 1983, 15(1): 223–239. doi: 10.1146/annurev.fl.15.010183.001255
|
[4] |
HORTON H P. Laminar separation bubbles in two and three dimensional incompressible flow[D]. London: Queen Mary University of London, 1968
|
[5] |
ALAM M, SANDHAM N D. Direct numerical simulation of ‘short’ laminar separation bubbles with turbulent reattach-ment[J]. Journal of Fluid Mechanics, 2000, 410: 1–28. doi: 10.1017/s0022112099008976
|
[6] |
SELIG M, GUGLIELMO J, BROERN A, et al. Experiments on airfoils at low Reynolds numbers[C]//Proc of the 34th Aerospace Sciences Meeting and Exhibit. 1996. doi: 10.2514/6.1996-62
|
[7] |
BREHM C, MACK S, GROSS A, et al. Investigations of an airfoil at low Reynolds number conditions[C]//Proc of the 4th Flow Control Conference. 2008. doi: 10.2514/6.2008-3765
|
[8] |
GROSS A, FASEL H. Numerical investigation of separation for airfoils at low Reynolds numbers[C]//Proc of the 40th Fluid Dynamics Conference and Exhibit. 2010. doi: 10.2514/6.2010-4736
|
[9] |
白鹏, 李锋, 詹慧玲, 等. 翼型低Re数小攻角非线性非定常层流分离现象研究[J]. 中国科学 (物理学 力学 天文学), 2015, 45(2): 41–52. DOI: 10.1360/sspma2014-00212
BAI P, LI F, ZHAN H L, et al. Study about the non-linear and unsteady laminar separation phenomena around the airfoil at low Reynolds number with low incidence[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2015, 45(2): 41–52. doi: 10.1360/sspma2014-00212
|
[10] |
ZHOU Y, WANG Z J. Implicit large eddy simulation of low Reynolds number transitional flow over a wing using high-order spectral difference method[C]//Proc of the 40th Fluid Dynamics Conference and Exhibit. 2010. doi: 10.2514/6.2010-4442
|
[11] |
BURGMANN S, BRÜCKER C, SCHRÖDER W. Scanning PIV measurements of a laminar separation bubble[J]. Experiments in Fluids, 2006, 41(2): 319–326. doi: 10.1007/s00348-006-0153-6
|
[12] |
BURGMANN S, DANNEMANN J, SCHRÖDER W. Time-resolved and volumetric PIV measurements of a transitional separation bubble on an SD7003 airfoil[J]. Experiments in Fluids, 2008, 44(4): 609–622. doi: 10.1007/s00348-007-0421-0
|
[13] |
OL M, MCCAULIFFE B, HANFF E, et al. Comparison of laminar separation bubble measurements on a low Reynolds number airfoil in three facilities[C]//Proc of the 35th AIAA Fluid Dynamics Conference and Exhibit. 2005. doi: 10.2514/6.2005-5149
|
[14] |
朱志斌, 刘强, 白鹏. 低雷诺数翼型层流分离现象大涡模拟方法[J]. 空气动力学学报, 2019, 37(6): 915–923. DOI: 10.7638/kqdlxxb-2018.0025
ZHU Z B, LIU Q, BAI P. Large eddy simulation method for the laminar separation phenomenon on low Reynolds number airfoils[J]. Acta Aerodynamica Sinica, 2019, 37(6): 915–923. doi: 10.7638/kqdlxxb-2018.0025
|
[15] |
朱志斌, 尚庆, 白鹏, 等. 翼型低雷诺数层流分离现象随雷诺数的演化特征[J]. 航空学报, 2019, 40(5): 122528. DOI: 10.7527/S1000-6893.2018.22528
ZHU Z B, SHANG Q, BAI P, et al. Evolution of laminar separation phenomenon on low Reynolds number airfoil at different Reynolds numbers[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(5): 122528. doi: 10.7527/S1000-6893.2018.22528
|
[16] |
ZHOU Y, WANG Z J. Effects of surface roughness on separated and transitional flows over a wing[J]. AIAA Journal, 2012, 50(3): 593–609. doi: 10.2514/1.j051237
|
[17] |
KAMARI D, TADJFAR M, MADADI A. Optimization of SD7003 airfoil performance using TBL and CBL at low Reynolds numbers[J]. Aerospace Science and Technology, 2018, 79: 199–211. doi: 10.1016/j.ast.2018.05.049
|
[18] |
朱玉杰, 孙振生, 张炜, 等. 低Reynolds数翼型绕流主动控制技术[J]. 气体物理, 2017, 2(6): 18–27. DOI: 10.19527/j.cnki.2096-1642.2017.06.003
ZHU Y J, SUN Z S, ZHANG W, et al. Active control of low Reynolds number airfoil flow by implicit large eddy simulation[J]. Physics of Gases, 2017, 2(6): 18–27. doi: 10.19527/j.cnki.2096-1642.2017.06.003
|
[19] |
LUMLEY J L. The structure of inhomogeneous turbu-lence[J]. Atmospheric Turbulence and Radio Wave Propa-gation, 1967: 166–178. doi: 10.1007/BF00271656
|
[20] |
BERKOOZ G, HOLMES P, LUMLEY J L. The proper orthogonal decomposition in the analysis of turbulent flows[J]. Annual Review of Fluid Mechanics, 1993, 25(1): 539–575. doi: 10.1146/annurev.fl.25.010193.002543
|
[21] |
SIROVICH L. Turbulence and the dynamics of coherent structures. I. Coherent structures[J]. Quarterly of Applied Mathematics, 1987, 45(3): 561–571. doi: 10.1090/qam/910462
|
[1] | LI Meng, ZHAO Huiyong, YUAN Qiang, CHEN Li, MU Jinhe. Experimental research on the influence of turbulence intensity on boundary layer transition in Mach 3 supersonic flow[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(6): 56-64. DOI: 10.11729/syltlx20220087 |
[2] | LIANG Zhi, HU Fei, SHI Yu, ZHANG Zhe, LIU Lei. Research of mast shadow effect on the average wind speed and turbulence intensity by field experiment[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(2): 88-97. DOI: 10.11729/syltlx20220010 |
[3] | ZHU Bo, CHEN Jiming, WU Wei, PEI Haitao. Experimental investigation of turbulence intensity measurement in continuous transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics. DOI: 10.11729/syltlx20220034 |
[4] | YANG Junwei, YANG Hua, FU Shifeng, ZONG Wangwang, SHA Chenglong. Wind tunnel experimental study of the grille-generated turbulence in the short test section[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(6): 86-93. DOI: 10.11729/syltlx20210042 |
[5] | HU Shangyu, LI Qiusheng, ZHANG Ming. Active turbulence simulation study of wind loads on standard low-rise building[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(4): 22-29. DOI: 10.11729/syltlx20190157 |
[6] | Yu Qianqian, Wang Jinhua, Zhang Weijie, Zhang Meng, Huang Zuohua. Development of scale-controlled premixed turbulent burner and the flame structure analysis[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(2): 10-17. DOI: 10.11729/syltlx20170150 |
[7] | Ma Ziran, Xu Minyi, Luan Jian, Liu Xiaopeng, Zhao Feifei. Statistical properties of turbulent free jets issuing from rectangular nozzles with different aspect ratios[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(1): 54-61. DOI: 10.11729/syltlx20160116 |
[8] | Zhu Bo, Peng Qiang, Tang Gengsheng. Digital signal process of low turbulence intensity based on EMD[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(5): 74-79. DOI: 10.11729/syltlx20150148 |
[9] | WU Wen-fei, XIE Jing-xing, GONG Zhi-jun, LI Bao-wei. PIV measurements of the turbulence integral length scale on cold combustion flow field in burner zone of tangential firing boiler[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(2): 38-41,50. DOI: 10.3969/j.issn.1672-9897.2012.02.008 |
[10] | LIU Gang, WANG Yang, WANG Xue-yan, SHI Jia-tao, WANG Jing. PIV measurements of the ILS on in-cylinder gas turbulent flow field of gasoline engine[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(1): 59-63,67. DOI: 10.3969/j.issn.1672-9897.2007.01.012 |
1. |
郭沛洋,张毅,张梦卓,胡海豹. 亲水-超疏水相间表面通气减阻实验研究. 力学学报. 2024(01): 94-100 .
![]() | |
2. |
秦立果,刘建波,李航,卢山,马泽宇,王征,董光能. 水下湍流减阻技术研究进展. 表面技术. 2024(16): 1-18 .
![]() | |
3. |
张春来,张丽霞,王潇,吴银涛,王波. 沟槽型微纳复合结构表面的制备与减阻性能研究. 材料导报. 2023(12): 239-243 .
![]() | |
4. |
张奕,潘翀,窦建宇,张淼. 微型涡流发生器影响下的湍流边界层流场与摩阻特性. 实验流体力学. 2023(04): 48-58 .
![]() | |
5. |
李茂林,张浩,玄克勇,石若冉,张志. 壁面微沟槽减阻技术研究进展. 煤气与热力. 2023(10): 12-19 .
![]() | |
6. |
李炳炘,张浩,玄克勇,孙国梁. 微沟槽减阻技术研究现状与进展综述. 煤气与热力. 2023(12): 21-27 .
![]() | |
7. |
罗忠,刘凯,周欣,胡俊波. 水下目标壳体复合涂层阻力试验. 船舶工程. 2022(09): 147-151 .
![]() |