Citation: | XU Z, LIU R, WANG T H, et al. Simulation and fabrication of bionic sharkskin composite micro-nano wind resistance reduction structure[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(2): 107-114. DOI: 10.11729/syltlx20220002 |
The combination of bionics and drag reduction technology has opened up an important research direction in the field of drag reduction, and has made a significant breakthrough. For better implementation to reduce the wind resistance effect, this paper studies the composite micro-nano drag reduction structure, according to the principle of bionics, through CFD simulation combined with the laser micro-nano fabrication technology. A combined model of drag reduction structure wad established. The flight vehicle air sensor head surface with bionic sharkskin composite micro-nano structures was manufactured by laser interference scanning on the basis of the bionic sharkskin scale structures, to further improve the drag reduction performance. Through the parallel simulation and wind tunnel test, the drag reduction mechanism was theoretically analyzed, and the composite structures were manufactured with a drag reduction rate of up to 10.3%.
[1] |
DOMEL A G, SAADAT M, WEAVER J C, et al. Shark skin-inspired designs that improve aerodynamic performance[J]. Journal of the Royal Society, Interface, 2018, 15(139): 20170828. doi: 10.1098/rsif.2017.0828
|
[2] |
李黎明. ANSYS有限元分析实用教程[M]. 北京: 清华大学出版社, 2005.
|
[3] |
WANG Y H, ZHANG Z B, XU J K, et al. One-step method using laser for large-scale preparation of bionic superhydro-phobic & drag-reducing fish-scale surface[J]. Surface and Coatings Technology, 2021, 409: 126801. doi: 10.1016/j.surfcoat.2020.126801
|
[4] |
WALSH M J. Turbulent boundary layer drag reduction using riblets[C]//AIAA 20th Aerospace Sciences Meeting. 1982. doi: 10.2514/6.1982-169
|
[5] |
SANDERS R H, RUSHALL B, TOUSSAINT H, et al. Bodysuit yourself: but first think about it[J]. Journal of Turbulence, 2001, S/3(138): 201–212.
|
[6] |
刘志华, 董文才, 夏飞. V型沟槽尖峰形状对减阻效果及流场特性影响的数值分析[J]. 水动力学研究与进展:A辑, 2006, 21(2): 223–231. DOI: 10.3969/j.issn.1000-4874.2006.02.011
LIU Z H, DONG W C, XIA F. The effects of the tip shape of V-groove on drag reduction and flow field characteristics by numerical analysis[J]. Journal of Hydrodynamics:Series A, 2006, 21(2): 223–231. doi: 10.3969/j.issn.1000-4874.2006.02.011
|
[7] |
田丽梅, 任露泉, 刘庆平, 等. 仿生非光滑旋成体表面减阻特性数值模拟[J]. 吉林大学学报(工学版), 2006, 36(6): 908–913. DOI: 10.3969/j.issn.1671-5497.2006.06.016
TIAN L M, REN L Q, LIU Q P, et al. Numerical simulation on drag reduction characteristic around bodies of revolution with bionic non-smooth surface[J]. Journal of Jilin University(Engineering and Technology Edition), 2006, 36(6): 908–913. doi: 10.3969/j.issn.1671-5497.2006.06.016
|
[8] |
DENG Z F, YANG Q, CHEN F, et al. Fabrication of large-area concave microlens array on silicon by femtosecond laser micromachining[J]. Optics Letters, 2015, 40(9): 1928–1931. doi: 10.1364/OL.40.001928
|
[9] |
丛茜, 封云, 任露泉. 仿生非光滑沟槽形状对减阻效果的影响[J]. 水动力学研究与进展:A辑, 2006, 21(2): 232–238. DOI: 10.3969/j.issn.1000-4874.2006.02.012
CONG Q, FENG Y, REN L Q. Affecting of riblets shape of nonsmooth surface on drag reduction[J]. Journal of Hydrodynamics:Series A, 2006, 21(2): 232–238. doi: 10.3969/j.issn.1000-4874.2006.02.012
|
[10] |
STANFORD B, IFJU P, ALBERTANI R, et al. Fixed membrane wings for micro air vehicles: experimental charac-terization, numerical modeling, and tailoring[J]. Progress in Aerospace Sciences, 2008, 44(4): 258–294. doi: 10.1016/j.paerosci.2008.03.001
|
[11] |
HU C L, WANG X D, WANG G Y, et al. The structures of unsteady cavitation shedding flow around an axisymmetric body with a blunt headform[J]. Journal of Mechanical Science and Technology, 2018, 32(1): 199–210. doi: 10.1007/s12206-017-1221-y
|
[12] |
JIANG X X, XU Y Q, WANG C, et al. Numerical simulations of gas-particle flow behavior created by low-level rotary-winged aircraft flight over particle bed[J]. Applied Mathematics and Mechanics, 2019, 40(3): 397–406. doi: 10.1007/s10483-019-2449-9
|
[13] |
OEFFNER J, LAUDER G V. The hydrodynamic function of shark skin and two biomimetic applications[J]. The Journal of Experimental Biology, 2012, 215(Pt 5): 785–795. doi: 10.1242/jeb.063040
|
[14] |
FUAAD P A, PRAKASH K A. Enhanced drag-reduction over superhydrophobic surfaces with sinusoidal textures: a DNS study[J]. Computers & Fluids, 2019, 181: 208–223. doi: 10.1016/j.compfluid.2019.01.022
|
[15] |
MENTER F. Zonal two equation k-ω turbulence models for aerodynamic flows[R]. AIAA-93-2906, 1993. doi: doi.org/10.2514/6.1993-2906
|
[16] |
BOROUCHAKI H, LAUG P, GEORGE P L. Parametric surface meshing using a combined advancing-front genera-lized Delaunay approach[J]. International Journal for Numerical Methods in Engineering, 2000, 49(1-2): 233–259. doi:10.1002/1097-0207(20000910/20)49:1/2<233::AID-NME931>3.0.CO;2-G
|
[17] |
VERSTEEG H, MALALASEKERA W. An introduction to computational fluid dynamics: the finite volume method[M]. Apache Junction: World Publishing Corporation, 1995.
|
[18] |
YANG D D, YU A, JI B, et al. Numerical analyses of ventilated cavitation over a 2-D NACA0015 hydrofoil using two turbulence modeling methods[J]. Journal of Hydro-dynamics, 2018, 30(2): 345–356. doi: 10.1007/s42241-018-0032-7
|
[19] |
RASTEGARI A, AKHAVAN R. The common mechanism of turbulent skin-friction drag reduction with superhydro-phobic longitudinal microgrooves and riblets[J]. Journal of Fluid Mechanics, 2018, 838: 68–104. doi: 10.1017/jfm.2017.865
|
[20] |
ZHANG L, SHAN X B, XIE T. Active control for wall drag reduction: methods, mechanisms and performance[J]. IEEE Access, 2020, 8: 7039–7057. doi: 10.1109/ACCESS.2020.2963843
|
[21] |
STRANG G, FIX G. An analysis of the finite element method[M]. Englewood: Prentice-Hall, 1973.
|
[22] |
CHEN D K, CUI X X, CHEN H W. Dual-composite drag-reduction surface based on the multilayered structure and mechanical properties of tuna skin[J]. Microscopy Research and Technique, 2021, 84(8): 1862–1872. doi: 10.1002/jemt.23743
|
[23] |
LIU R, CHI Z D, CAO L, et al. Fabrication of biomimetic superhydrophobic and anti-icing Ti6Al4V alloy surfaces by direct laser interference lithography and hydrothermal treatment[J]. Applied Surface Science, 2020, 534: 147576. doi: 10.1016/j.apsusc.2020.147576
|
[1] | ZHU Dongyu, FENG Qiang, Han Xiaotao, Yang Ximing, Cui Xiaochun, Yuan Li. Researches on a large natural moveable icing wind tunnel and test methods[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(1): 52-61. DOI: 10.11729/syltlx20210100 |
[2] | GUO Xiangdong, ZHANG Pingtao, ZHAO Xianli, YANG Shengke, LIN Wei. The compliance verification of thermodynamic flowfield in the large icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(5): 79-88. DOI: 10.11729/syltlx20190113 |
[3] | ZHU Xinxin, LONG Yongsheng, SHI Youan, YANG Qingtao, ZHOU Ping, ZHAO Shunhong. Optimal design of steady enthalpy probe and test verification[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(4): 87-93. DOI: 10.11729/syltlx20190062 |
[4] | Zhang Hui, Fan Litao. Correlation analysis of large low speed wind tunnel test on CHN-T1 calibration model[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 106-111. DOI: 10.11729/syltlx20180046 |
[5] | Gao Guochi, Li Baoliang, Ding Li, Wang Zixu, Ni Zhangsong. Icing wind tunnel test technology for pneumatic de-icing aircraft[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(2): 95-101. DOI: 10.11729/syltlx20180064 |
[6] | Wang Zixu, Shen Hao, Guo Long, Guo Xiangdong, Ni Zhangsong. Cloud calibration method of 3m×2m icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(2): 61-67. DOI: 10.11729/syltlx20170163 |
[7] | Zhou Feng, Feng Lijuan, Xu Chaojun, Zhao Keliang, Han Zhirong. Determination and verification of critical ice shape for the certification of civil aircraft[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(2): 8-13. DOI: 10.11729/syltlx20160019 |
[8] | Shen Chen, Yang Zhigang. Numerical methods exploration and experimental validation of Ahmed model with consideration of fluid-solid-interaction effect[J]. Journal of Experiments in Fluid Mechanics, 2014, (4): 37-42. DOI: 10.11729/syltlx20130017 |
[9] | YUAN Hong-gang, YANG Yong-dong, ZHANG Gui-chuan, HUANG Ming-qi. Improving techniques and validating of rotor and fuselage compound model test stand[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(4): 87-90. DOI: 10.3969/j.issn.1672-9897.2012.04.018 |
[10] | GUO Shan-guang, LIU Jun, JIN Liang, LUO Shi-bin. Numerical simulation and experiment validation on shock oscillations of inner flow path of hypersonic vehicle[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(1): 7-11. DOI: 10.3969/j.issn.1672-9897.2012.01.002 |