FU Q F,GE F,CHENG J B,et al. Study on oscillation behavior of cone jet under unsteady electric field[J]. Journal of Experiments in Fluid Mechanics, 2021,35(6):8-16.. DOI: 10.11729/syltlx20200152
Citation: FU Q F,GE F,CHENG J B,et al. Study on oscillation behavior of cone jet under unsteady electric field[J]. Journal of Experiments in Fluid Mechanics, 2021,35(6):8-16.. DOI: 10.11729/syltlx20200152

Study on oscillation behavior of cone jet under unsteady electric field

More Information
  • Received Date: December 06, 2020
  • Revised Date: March 05, 2021
  • Available Online: November 11, 2021
  • In view of the lack of systematic research on electro-atomization under the action of unsteady electric field in the existing literature, combined with the actual demand of the space engine for the pulse operation of the thruster, the experimental study on the oscillation behavior of the cone jet under the action of the unsteady electric field is carried out, using the high-speed camera which records the pulsating deformation process of the cone jet under the action of unsteady voltage disturbance. This paper discusses the matching relationship between the jet oscillation frequency and the voltage disturbance frequency, and analyzes the influence of different disturbance voltage parameters on the jet shape. Studies show that when the voltage disturbance frequency is in the low and high frequency range under the action of an unsteady electric field, the jet oscillation frequency is close to the voltage disturbance frequency, and the jet is in the oscillating cone jet mode; when the disturbance frequency is in the middle frequency range, the jet oscillation frequency is in the range of 300–500 Hz, and the jet is in the intermittent jet mode; as the amplitude of the unsteady disturbance voltage increases, the frequency range of the jet in the intermittent jet mode gets larger, and the range in the oscillating cone jet mode becomes smaller; The greater the voltage disturbance frequency is, the greater the cone jet angle of the jet in the oscillating cone jet mode is.
  • [1]
    CLOUPEAU M,PRUNET-FOCH B. Electrostatic spraying of liquids: Main functioning modes[J]. Journal of Electrostatics,1990,25(2):165-184. doi: 10.1016/0304-3886(90)90025-Q
    [2]
    GRACE J M,MARIJNISSEN J C M. A review of liquid atomization by electrical means[J]. Journal of Aerosol Science,1994,25(6):1005-1019. doi: 10.1016/0021-8502(94)90198-8
    [3]
    JAWOREK A,KRUPA A. Classification of the modes of EHD spraying[J]. Journal of Aerosol Science,1999,30(7):873-893. doi: 10.1016/S0021-8502(98)00787-3
    [4]
    SATO M. The production of essentially uniform-sized liquid droplets in gaseous or immiscible liquid media under applied a. c. potential[J]. Journal of Electrostatics,1984,15(2):237-247. doi: 10.1016/0304-3886(84)90009-3
    [5]
    SAMPLE S B,BOLLINI R. Production of liquid aerosols by harmonic electrical spraying[J]. Journal of Colloid and Interface Science,1972,41(2):185-193. doi: 10.1016/0021-9797(72)90107-5
    [6]
    BALACHANDRAN W,MACHOWSKI W,AHMAD C N. Electro-static atomization of conducting liquids using AC superimposed on DC fields[J]. IEEE Transactions on Industry Applications,1994,30(4):850-855. doi: 10.1109/28.297899
    [7]
    HUNEITI Z,BALACHANDRAN W,MACHOWSKI W. The study of AC coupled DC fields on conducting liquid jets[J]. Journal of Electrostatics,1997,40-41:97-102. doi: 10.1016/S0304-3886(97)00021-1
    [8]
    DENG W W,GOMEZ A. Full transient response of Taylor cones to a step change in electric field[J]. Microfluidics and Nanofluidics,2012,12(1-4):383-393. doi: 10.1007/s10404-011-0882-6
    [9]
    CHOI H K,PARK J U,PARK O O,et al. Scaling laws for jet pulsations associated with high-resolution electrohydrodynamic print-ing[J]. Applied Physics Letters,2008,92(12):123109. doi: 10.1063/1.2903700
    [10]
    PAINE M D,ALEXANDER M S,SMITH K L,et al. Controlled electrospray pulsation for deposition of femtoliter fluid droplets onto surfaces[J]. Journal of Aerosol Science,2007,38(3):315-324. doi: 10.1016/j.jaerosci.2006.12.004
    [11]
    PANTANO C,GAÑÁN-CALVO A M,BARRERO A. Zeroth-order, electrohydrostatic solution for electrospraying in cone-jet mode[J]. Journal of Aerosol Science,1994,25(6):1065-1077. doi: 10.1016/0021-8502(94)90202-X
    [12]
    RAYLEIGH J W S. The theory of sound[M]. 2rd ed. London: Macmillan and Co., 1896.
  • Related Articles

    [1]DUAN Pengyu, CHEN Xi. Composite drag control and energy flux analysis for wall turbulence[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(4): 1-10. DOI: 10.11729/syltlx20230126
    [2]MENG Fanzhe, Qin Liping, XIE Luo, SHI Pengfei, HU Haibao. Experimental study on drag reduction characteristics of biopolysaccharide solution[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(2): 56-61. DOI: 10.11729/syltlx20210089
    [3]XU Shengxuan, ZHAO Wenbin, LI Mingyi, LIN Yuying, LI Changfeng. Experimental study on pipe flow transition of XG solution and drag reduction characteristics with different mass fractions of NaCl[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(4): 34-40. DOI: 10.11729/syltlx20200041
    [4]ZHANG Wenyun, HU Haibao, WEN Jun, CAO Gang, REN Liuzhen. Advances in experimental research on Taylor-Couette flow characteristics and drag reduction[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(2): 104-111. DOI: 10.11729/syltlx20190163
    [5]Zhu Bo, Zhao Wenbin, Li Mingyi, Yuan Yichao, Yu Wenhui, Li Changfeng. Experimental study on drag reduction and anti-shearing characteristics of xanthan gum solution with NaCl[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(5): 61-66. DOI: 10.11729/syltlx20180035
    [6]CHEN Ying, CHEN Ying-chun, HUANG Wei, HU Ren-yu, YAO Kai-ming, WANG Fu-xin. Experiment investigation of drag reduction using riblets for a slender body[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(2): 42-45. DOI: 10.3969/j.issn.1672-9897.2012.02.009
    [7]GENG Zi-hai, LIU Shuang-ke, WANG Xun-nian, ZHANG Yang. Test study of drag reduction technique by hybrid laminar flow control with two-dimension airfoil[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(1): 46-50. DOI: 10.3969/j.issn.1672-9897.2010.01.009
    [8]YU Yong-sheng, WEI Qing-ding. Experiments on the drag-reduction of non-wetting materials[J]. Journal of Experiments in Fluid Mechanics, 2005, 19(2): 60-66. DOI: 10.3969/j.issn.1672-9897.2005.02.012
    [9]An experimental investigation of grid fin drag reduction techniques[J]. Journal of Experiments in Fluid Mechanics, 2001, 15(4): 7-11. DOI: 10.3969/j.issn.1672-9897.2001.04.002
    [10]CHEN Shaosong, DING Ze-sheng, LUO Rong, CAO Ding-gui. An investigation on characteristics of base drag reduction with base bleed in subsonic and transonic speeds[J]. Journal of Experiments in Fluid Mechanics, 2000, 14(4): 41-45. DOI: 10.3969/j.issn.1672-9897.2000.04.008
  • Other Related Supplements

Catalog

    Article Metrics

    Article views (542) PDF downloads (49) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close