FU Hao, HE Chuangxin, LIU Yingzheng. PIV experimental study on flow characteristics of a low swirl number precessing jet[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(3): 39-45. DOI: 10.11729/syltlx20200129
Citation: FU Hao, HE Chuangxin, LIU Yingzheng. PIV experimental study on flow characteristics of a low swirl number precessing jet[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(3): 39-45. DOI: 10.11729/syltlx20200129

PIV experimental study on flow characteristics of a low swirl number precessing jet

More Information
  • Received Date: October 21, 2020
  • Revised Date: November 08, 2020
  • This study focuses on the flow characteristics of a low swirl number precessing jet at Reynolds number Re=4.5×104 using particle image velocimetry (PIV). The time-averaged streamwise velocity fields, streamwise velocity fluctuation intensity fields and time-averaged vorticity fields at three swirl numbers, i.e., S=0, 0.26 and 0.41, respectively, are compared and analyzed. The experimental results show that as the swirl number increases, the attenuation of the streamwise velocity and its fluctuation intensity increase along the streamwsie direction, the velocity fluctuation intensity on the jet centerline increases, the recirculation zones caused by the confinement move upstream with their scales decreasing, and the streamwise development of the vortex in the outer shear layer decays rapidly, while that in the inner shear layer is almost unaffected. In addition, combining the streamwise velocity spectrum and the characteristics of the transient flow field at a typical time, it can be seen that as the swirl number increases, the precession frequency increases, and the starting position of the precession phenomenon moves upstream, which increases the precession deflection angle.
  • [1]
    NATHAN G J, MANIAS C G. The role of process and flame interaction in reducing NOx emissions[C]//Proceedings of the Institute of Energy's Second International Conference on Combustion & Emissions Control. 1995. doi: 10.1016/b978-0-902597-49-5.50032-9
    [2]
    NEWBOLD G J R, NATHAN G J, NOBES D S, et al. Measurement and prediction of NOx emissions from unconfined propane flames from turbulent-jet, bluff-body, swirl, and precessing jet burners[J]. Proceedings of the Combustion Institute, 2000, 28(1): 481-487. doi: 10.1016/S0082-0784(00)80246-5
    [3]
    DENG Y B, WU H W, SU F M. Combustion and exhaust emission characteristics of low swirl injector[J]. Applied Thermal Engineering, 2017, 110: 171-180. doi: 10.1016/j.applthermaleng.2016.08.169
    [4]
    COLORADO A, MCDONELL V. Emissions and stability performance of a low-swirl burner operated on simulated biogas fuels in a boiler environment[J]. Applied Thermal Engineering, 2018, 130: 1507-1519. doi: 10.1016/j.applthermaleng.2017.11.047
    [5]
    TONG Y H, YU S B, LIU X, et al. Experimental study on dynamics of a confined low swirl partially premixed methane-hydrogen-air flame[J]. International Journal of Hydrogen Energy, 2017, 42(44): 27400-27415. doi: 10.1016/j.ijhydene.2017.09.066
    [6]
    LUXTON R E, NATHAN G J. Mixing fluids: Australian, PCT/AU88/0014. 1987.
    [7]
    NATHAN G J. The enhanced mixing burner[D]. Adelaide: The University of Adelaide, 1988.
    [8]
    NEWBOLD G. Mixing and combustion inprecessing jet flows[D]. Adelaide: The University of Adelaide, 1998.
    [9]
    NATHAN G J, HILL S J, LUXTON R E. An axisymmetric 'fluidic' nozzle to generate jet precession[J]. Journal of Fluid Mechanics, 1998, 370: 347-380. doi: 10.1017/s002211209800202x
    [10]
    WONG C Y, NATHAN G J, KELSO R M. The naturally oscillating flow emerging from a fluidicprecessing jet nozzle[J]. Journal of Fluid Mechanics, 2008, 606: 153-188. doi: 10.1017/s0022112008001699
    [11]
    WONG C Y, LANSPEARY P V, NATHAN G J, et al. Phase-averaged velocity in a fluidicprecessing jet nozzle and in its near external field[J]. Experimental Thermal and Fluid Science, 2003, 27(5): 515-524. doi: 10.1016/S0894-1777(02)00265-0
    [12]
    CAFIERO G, CEGLIA G, DISCETTI S, et al. On the three-dimensionalprecessing jet flow past a sudden expansion[J]. Experiments in Fluids, 2014, 55(2): 1-13. doi: 10.1007/s00348-014-1677-9
    [13]
    CEGLIA G, CAFIERO G, ASTARITA T. Experimental investigation on the three-dimensional organization of the flow structures inprecessing jets by tomographic PIV[J]. Experimental Thermal and Fluid Science, 2017, 89: 166-180. doi: 10.1016/j.expthermflusci.2017.08.008
    [14]
    GUPTA A K, LILLEY D G, SYRED N. Swirl flows[M]. Tunbridge Wells: Abacus Press, 1984.
    [15]
    FROUD D, O'DOHERTY T, SYRED N. Phase averaging of theprecessing vortex core in a swirl burner under piloted and premixed combustion conditions[J]. Combustion and Flame, 1995, 100(3): 407-412. doi: 10.1016/0010-2180(94)00167-Q
    [16]
    DELLENBACK P A, METZGER D E, NEITZEL G P. Measurements in turbulent swirling flow through an abrupt axisymmetric expansion[J]. AIAA Journal, 1988, 26(6): 669-681. doi: 10.2514/3.9952
    [17]
    HE C X, GAN L, LIU Y Z. The formation and evolution of turbulent swirling vortex rings generated by axial swirlers[J]. Flow, Turbulence and Combustion, 2020, 104(4): 795-816. doi: 10.1007/s10494-019-00076-2
    [18]
    MI J, NATHAN G J. Self-excited jet-precessionStrouhal number and its influence on downstream mixing field[J]. Journal of Fluids and Structures, 2004, 19(6): 851-862. doi: 10.1016/j.jfluidstructs.2004.04.006
  • Related Articles

    [1]LI Meng, ZHAO Huiyong, YUAN Qiang, CHEN Li, MU Jinhe. Experimental research on the influence of turbulence intensity on boundary layer transition in Mach 3 supersonic flow[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(6): 56-64. DOI: 10.11729/syltlx20220087
    [2]LIANG Zhi, HU Fei, SHI Yu, ZHANG Zhe, LIU Lei. Research of mast shadow effect on the average wind speed and turbulence intensity by field experiment[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(2): 88-97. DOI: 10.11729/syltlx20220010
    [3]ZHU Bo, CHEN Jiming, WU Wei, PEI Haitao. Experimental investigation of turbulence intensity measurement in continuous transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics. DOI: 10.11729/syltlx20220034
    [4]YANG Junwei, YANG Hua, FU Shifeng, ZONG Wangwang, SHA Chenglong. Wind tunnel experimental study of the grille-generated turbulence in the short test section[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(6): 86-93. DOI: 10.11729/syltlx20210042
    [5]HU Shangyu, LI Qiusheng, ZHANG Ming. Active turbulence simulation study of wind loads on standard low-rise building[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(4): 22-29. DOI: 10.11729/syltlx20190157
    [6]Yu Qianqian, Wang Jinhua, Zhang Weijie, Zhang Meng, Huang Zuohua. Development of scale-controlled premixed turbulent burner and the flame structure analysis[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(2): 10-17. DOI: 10.11729/syltlx20170150
    [7]Ma Ziran, Xu Minyi, Luan Jian, Liu Xiaopeng, Zhao Feifei. Statistical properties of turbulent free jets issuing from rectangular nozzles with different aspect ratios[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(1): 54-61. DOI: 10.11729/syltlx20160116
    [8]Zhu Bo, Peng Qiang, Tang Gengsheng. Digital signal process of low turbulence intensity based on EMD[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(5): 74-79. DOI: 10.11729/syltlx20150148
    [9]WU Wen-fei, XIE Jing-xing, GONG Zhi-jun, LI Bao-wei. PIV measurements of the turbulence integral length scale on cold combustion flow field in burner zone of tangential firing boiler[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(2): 38-41,50. DOI: 10.3969/j.issn.1672-9897.2012.02.008
    [10]LIU Gang, WANG Yang, WANG Xue-yan, SHI Jia-tao, WANG Jing. PIV measurements of the ILS on in-cylinder gas turbulent flow field of gasoline engine[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(1): 59-63,67. DOI: 10.3969/j.issn.1672-9897.2007.01.012
  • Cited by

    Periodical cited type(7)

    1. 郭沛洋,张毅,张梦卓,胡海豹. 亲水-超疏水相间表面通气减阻实验研究. 力学学报. 2024(01): 94-100 .
    2. 秦立果,刘建波,李航,卢山,马泽宇,王征,董光能. 水下湍流减阻技术研究进展. 表面技术. 2024(16): 1-18 .
    3. 张春来,张丽霞,王潇,吴银涛,王波. 沟槽型微纳复合结构表面的制备与减阻性能研究. 材料导报. 2023(12): 239-243 .
    4. 张奕,潘翀,窦建宇,张淼. 微型涡流发生器影响下的湍流边界层流场与摩阻特性. 实验流体力学. 2023(04): 48-58 . 本站查看
    5. 李茂林,张浩,玄克勇,石若冉,张志. 壁面微沟槽减阻技术研究进展. 煤气与热力. 2023(10): 12-19 .
    6. 李炳炘,张浩,玄克勇,孙国梁. 微沟槽减阻技术研究现状与进展综述. 煤气与热力. 2023(12): 21-27 .
    7. 罗忠,刘凯,周欣,胡俊波. 水下目标壳体复合涂层阻力试验. 船舶工程. 2022(09): 147-151 .

    Other cited types(9)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close