Citation: | FU Hao, HE Chuangxin, LIU Yingzheng. PIV experimental study on flow characteristics of a low swirl number precessing jet[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(3): 39-45. DOI: 10.11729/syltlx20200129 |
[1] |
NATHAN G J, MANIAS C G. The role of process and flame interaction in reducing NOx emissions[C]//Proceedings of the Institute of Energy's Second International Conference on Combustion & Emissions Control. 1995. doi: 10.1016/b978-0-902597-49-5.50032-9
|
[2] |
NEWBOLD G J R, NATHAN G J, NOBES D S, et al. Measurement and prediction of NOx emissions from unconfined propane flames from turbulent-jet, bluff-body, swirl, and precessing jet burners[J]. Proceedings of the Combustion Institute, 2000, 28(1): 481-487. doi: 10.1016/S0082-0784(00)80246-5
|
[3] |
DENG Y B, WU H W, SU F M. Combustion and exhaust emission characteristics of low swirl injector[J]. Applied Thermal Engineering, 2017, 110: 171-180. doi: 10.1016/j.applthermaleng.2016.08.169
|
[4] |
COLORADO A, MCDONELL V. Emissions and stability performance of a low-swirl burner operated on simulated biogas fuels in a boiler environment[J]. Applied Thermal Engineering, 2018, 130: 1507-1519. doi: 10.1016/j.applthermaleng.2017.11.047
|
[5] |
TONG Y H, YU S B, LIU X, et al. Experimental study on dynamics of a confined low swirl partially premixed methane-hydrogen-air flame[J]. International Journal of Hydrogen Energy, 2017, 42(44): 27400-27415. doi: 10.1016/j.ijhydene.2017.09.066
|
[6] |
LUXTON R E, NATHAN G J. Mixing fluids: Australian, PCT/AU88/0014. 1987.
|
[7] |
NATHAN G J. The enhanced mixing burner[D]. Adelaide: The University of Adelaide, 1988.
|
[8] |
NEWBOLD G. Mixing and combustion inprecessing jet flows[D]. Adelaide: The University of Adelaide, 1998.
|
[9] |
NATHAN G J, HILL S J, LUXTON R E. An axisymmetric 'fluidic' nozzle to generate jet precession[J]. Journal of Fluid Mechanics, 1998, 370: 347-380. doi: 10.1017/s002211209800202x
|
[10] |
WONG C Y, NATHAN G J, KELSO R M. The naturally oscillating flow emerging from a fluidicprecessing jet nozzle[J]. Journal of Fluid Mechanics, 2008, 606: 153-188. doi: 10.1017/s0022112008001699
|
[11] |
WONG C Y, LANSPEARY P V, NATHAN G J, et al. Phase-averaged velocity in a fluidicprecessing jet nozzle and in its near external field[J]. Experimental Thermal and Fluid Science, 2003, 27(5): 515-524. doi: 10.1016/S0894-1777(02)00265-0
|
[12] |
CAFIERO G, CEGLIA G, DISCETTI S, et al. On the three-dimensionalprecessing jet flow past a sudden expansion[J]. Experiments in Fluids, 2014, 55(2): 1-13. doi: 10.1007/s00348-014-1677-9
|
[13] |
CEGLIA G, CAFIERO G, ASTARITA T. Experimental investigation on the three-dimensional organization of the flow structures inprecessing jets by tomographic PIV[J]. Experimental Thermal and Fluid Science, 2017, 89: 166-180. doi: 10.1016/j.expthermflusci.2017.08.008
|
[14] |
GUPTA A K, LILLEY D G, SYRED N. Swirl flows[M]. Tunbridge Wells: Abacus Press, 1984.
|
[15] |
FROUD D, O'DOHERTY T, SYRED N. Phase averaging of theprecessing vortex core in a swirl burner under piloted and premixed combustion conditions[J]. Combustion and Flame, 1995, 100(3): 407-412. doi: 10.1016/0010-2180(94)00167-Q
|
[16] |
DELLENBACK P A, METZGER D E, NEITZEL G P. Measurements in turbulent swirling flow through an abrupt axisymmetric expansion[J]. AIAA Journal, 1988, 26(6): 669-681. doi: 10.2514/3.9952
|
[17] |
HE C X, GAN L, LIU Y Z. The formation and evolution of turbulent swirling vortex rings generated by axial swirlers[J]. Flow, Turbulence and Combustion, 2020, 104(4): 795-816. doi: 10.1007/s10494-019-00076-2
|
[18] |
MI J, NATHAN G J. Self-excited jet-precessionStrouhal number and its influence on downstream mixing field[J]. Journal of Fluids and Structures, 2004, 19(6): 851-862. doi: 10.1016/j.jfluidstructs.2004.04.006
|
[1] | LI Meng, ZHAO Huiyong, YUAN Qiang, CHEN Li, MU Jinhe. Experimental research on the influence of turbulence intensity on boundary layer transition in Mach 3 supersonic flow[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(6): 56-64. DOI: 10.11729/syltlx20220087 |
[2] | LIANG Zhi, HU Fei, SHI Yu, ZHANG Zhe, LIU Lei. Research of mast shadow effect on the average wind speed and turbulence intensity by field experiment[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(2): 88-97. DOI: 10.11729/syltlx20220010 |
[3] | ZHU Bo, CHEN Jiming, WU Wei, PEI Haitao. Experimental investigation of turbulence intensity measurement in continuous transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics. DOI: 10.11729/syltlx20220034 |
[4] | YANG Junwei, YANG Hua, FU Shifeng, ZONG Wangwang, SHA Chenglong. Wind tunnel experimental study of the grille-generated turbulence in the short test section[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(6): 86-93. DOI: 10.11729/syltlx20210042 |
[5] | HU Shangyu, LI Qiusheng, ZHANG Ming. Active turbulence simulation study of wind loads on standard low-rise building[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(4): 22-29. DOI: 10.11729/syltlx20190157 |
[6] | Yu Qianqian, Wang Jinhua, Zhang Weijie, Zhang Meng, Huang Zuohua. Development of scale-controlled premixed turbulent burner and the flame structure analysis[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(2): 10-17. DOI: 10.11729/syltlx20170150 |
[7] | Ma Ziran, Xu Minyi, Luan Jian, Liu Xiaopeng, Zhao Feifei. Statistical properties of turbulent free jets issuing from rectangular nozzles with different aspect ratios[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(1): 54-61. DOI: 10.11729/syltlx20160116 |
[8] | Zhu Bo, Peng Qiang, Tang Gengsheng. Digital signal process of low turbulence intensity based on EMD[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(5): 74-79. DOI: 10.11729/syltlx20150148 |
[9] | WU Wen-fei, XIE Jing-xing, GONG Zhi-jun, LI Bao-wei. PIV measurements of the turbulence integral length scale on cold combustion flow field in burner zone of tangential firing boiler[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(2): 38-41,50. DOI: 10.3969/j.issn.1672-9897.2012.02.008 |
[10] | LIU Gang, WANG Yang, WANG Xue-yan, SHI Jia-tao, WANG Jing. PIV measurements of the ILS on in-cylinder gas turbulent flow field of gasoline engine[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(1): 59-63,67. DOI: 10.3969/j.issn.1672-9897.2007.01.012 |
1. |
郭沛洋,张毅,张梦卓,胡海豹. 亲水-超疏水相间表面通气减阻实验研究. 力学学报. 2024(01): 94-100 .
![]() | |
2. |
秦立果,刘建波,李航,卢山,马泽宇,王征,董光能. 水下湍流减阻技术研究进展. 表面技术. 2024(16): 1-18 .
![]() | |
3. |
张春来,张丽霞,王潇,吴银涛,王波. 沟槽型微纳复合结构表面的制备与减阻性能研究. 材料导报. 2023(12): 239-243 .
![]() | |
4. |
张奕,潘翀,窦建宇,张淼. 微型涡流发生器影响下的湍流边界层流场与摩阻特性. 实验流体力学. 2023(04): 48-58 .
![]() | |
5. |
李茂林,张浩,玄克勇,石若冉,张志. 壁面微沟槽减阻技术研究进展. 煤气与热力. 2023(10): 12-19 .
![]() | |
6. |
李炳炘,张浩,玄克勇,孙国梁. 微沟槽减阻技术研究现状与进展综述. 煤气与热力. 2023(12): 21-27 .
![]() | |
7. |
罗忠,刘凯,周欣,胡俊波. 水下目标壳体复合涂层阻力试验. 船舶工程. 2022(09): 147-151 .
![]() |