CHEN Shuyue, GUO Xiangdong, WANG Zixu, LIU senyun, WU Yingchun. Preliminary research on size measurement of supercooled large droplet in icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(3): 22-29. DOI: 10.11729/syltlx20200104
Citation: CHEN Shuyue, GUO Xiangdong, WANG Zixu, LIU senyun, WU Yingchun. Preliminary research on size measurement of supercooled large droplet in icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(3): 22-29. DOI: 10.11729/syltlx20200104

Preliminary research on size measurement of supercooled large droplet in icing wind tunnel

More Information
  • Received Date: September 02, 2020
  • Revised Date: October 12, 2020
  • Drop-size measurement of the supercooled large droplet (SLD) is very important for capacity building of the icing wind tunnel. In order to evaluate the capability of Phase Doppler Interferometer Flight Probe Dual Range (PDI-FPDR) in measuring the diameter of SLD, the standard droplet stream generated by a droplet generator, was used to evaluate the uncertainty of PDI-FPDR for drop size measurement. Then, for the real large-droplet spray, the particle size characteristic parameters were measured by Malvern and PDI-FPDR simultaneously. The large-droplet spray measurement capability of PDI-FPDR has been further evaluated. The results show that the small size range channel of PDI-FPDR can't accurately measure large droplets, and its measurement results are much smaller than the real droplet size. The relative error of measuring a 189.0 μm droplet is -72.8%. The measuring accuracy of the large size range channel is high, but the precision is poor. The relative error of measuring a 240.5 μm droplet is -5.1%, and the maximum deviation is 50.2 μm. For typical large-droplet spray, the PDI-FPDR small size range channel has poor applicability under measuring conditions of median volume diameter (MVD) greater than 75.0 μm. The measured MVD values of PDI-FPDR large size range channel are larger than those of Malvern.
  • [1]
    CEBECI T, KAFYEKE F. Aircraft icing[J]. Annual Review of Fluid Mechanics, 2003, 35(1): 11-21. doi: 10.1146/annurev.fluid.35.101101.161217
    [2]
    林贵平, 卜雪琴, 申晓斌, 等. 飞机结冰与防冰技术[M]. 北京: 北京航空航天大学出版社, 2016.
    [3]
    Federal Aviation Administration (FAA), DOT. FAA-2010-0636, Airplane and engine certification requirements in supercooled large drop, mixed phase, and ice crystal icing conditions[S]. Washington, DC: Federal Register, 2014.
    [4]
    符澄, 宋文萍, 彭强, 等. 结冰风洞过冷大水滴结冰条件模拟能力综述[J]. 实验流体力学, 2017, 31(4): 1-7. DOI: 10.11729/syltlx20160118

    FU C, SONG W P, PENG Q, et al. An overview of supercooled large droplets icing condition simulation capability in icing wind tunnels[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(4): 1-7. doi: 10.11729/syltlx20160118
    [5]
    FERSCHITZ H, WANNEMACHER M, BUCEK O, et al. Development of SLD capabilities in the RTA icing wind tunnel[J]. SAE International Journal of Aerospace, 2017, 10(1): 12-21. doi: 10.4271/2017-01-9001.
    [6]
    IDE R F, OLDENBURG J R. Icing cloud calibration of the NASA Glenn icing research tunnel[R]. AIAA-2001-0234, 2001. doi: 10.2514/6.2001-234
    [7]
    IDE R F, SHELDON D W. 2006 icing cloud calibration of the NASA Glenn icing research tunnel[R]. NASA/TM-2008-215177, 2008.
    [8]
    VAN ZANTE J F, IDE R F, STEEN L E. NASA Glenn icing research tunnel: 2012 cloud calibration procedure and results[C]//Proc of the 4th AIAA Atmospheric and Space Environments Conference. 2012. doi: 10.2514/6.2012-2933
    [9]
    VAN ZANTE J F, IDE R F, STEEN L E. NASA Glenn icing research tunnel: 2014 cloud calibration procedures and results[R]. NASA/TM-2014-218392, 2014.
    [10]
    STEEN L E, IDE R F, VAN ZANTE J F, et al. NASA Glenn icing research tunnel: 2014 and 2015 cloud calibration procedures and results[R]. NASA/TM-2015-218758, 2015.
    [11]
    IMPERATO L, LEONE G, VECCHIONE L. Spray nozzles experiment comparison in laboratory and icing wind tunnel testing[R]. AIAA-2000-0487, 2000. doi: 10.2514/6.2000-487
    [12]
    ORCHARD D M, CLARK C, OLESKIW M. Development of a supercooled large droplet environment within the NRC altitude icing wind tunnel[C]//Proc of the SAE 2015 International Conference on Icing of Aircraft, Engines, and Structures. 2015. doi: 10.4271/2015-01-2092
    [13]
    Society of Automotive Engineers. SAE ARP-4906, Droplet sizing instrumentation used in icing facilities[S]. Warrendale, PA: SAE International, 2007. doi: 10.4271/AIR4906
    [14]
    Society of Automotive Engineers. SAE ARP-5666, Icing wind tunnel interfacility comparison tests[S]. Warrendale, PA: SAE International, 2012. doi: 10.4271/AIR5666A
    [15]
    LEONE G, VECCHIONE L, DE MATTEIS P, et al. The new CIRA icing wind tunnel spray bar system development[C]//Proc of the 38th Aerospace Sciences Meeting and Exhibit. 2000. doi: 10.2514/6.2000-629
    [16]
    程尧, 张平涛, 郭向东, 等. 机载式相位多普勒干涉仪在结冰风洞的应用[J]. 兵工自动化, 2017, 36(9): 55-57. https://www.cnki.com.cn/Article/CJFDTOTAL-BGZD201709014.htm

    CHENG Y, ZHANG P T, GUO X D, et al. Application of PDI-FPDR in icing wind tunnel[J]. Ordnance Industry Automation, 2017, 36(9): 55-57. https://www.cnki.com.cn/Article/CJFDTOTAL-BGZD201709014.htm
    [17]
    王梓旭, 沈浩, 郭龙, 等. 3 m×2 m结冰风洞云雾参数校测方法[J]. 实验流体力学, 2018, 32(2): 61-67. DOI: 10.11729/syltlx20170163

    WANG Z X, SHEN H, GUO L, et al. Cloud calibration method of 3 m×2 m icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(2): 61-67. doi: 10.11729/syltlx20170163
    [18]
    郭向东, 张平涛, 赵照, 等. 大型结冰风洞云雾场适航应用符合性验证[J]. 航空学报, 2020, 41(10): 123879. DOI: 10.7527/S1000-6893.2020.23879

    GUO X D, ZHANG P T, ZHAO Z, et al. Airworthiness application compliance verification of cloud flowfield in large icing wind tunnel[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(10): 123879. doi: 10.7527/S1000-6893.2020.23879
    [19]
    Artium Technologies Inc. PDI flight probe dual range (FPDR) user manual[Z]. Artium Technologies Inc, 2013.
    [20]
    BACHALO W D. Measurement techniques for turbulent two-phase flow research[C]//Proc of International Symposium on Multiphase Fluid, Non-Newtonian Fluid and Physicochemical Fluid Flows. 1997.
    [21]
    STRAPP J W, OLDENBURG J, IDE R, et al. Wind tunnel measurements of the response of hot-wire liquid water content instruments to large droplets[J]. Journal of Atmospheric and Oceanic Technology, 2003, 20(6): 791-806. doi: 10.1175/1520-0426(2003)020<0791:wtmotr>2.0.co;2
    [22]
    WU X C, LYU Q M, WU Y C, et al. Dual-stream of monodisperse droplet generator[J]. Chemical Engineering Science, 2020, 223: 115645. doi: 10.1016/j.ces.2020.115645
    [23]
    Malvern Instruments Ltd. Spraytec user manual[Z]. Malvern Instruments Ltd, 2006.
    [24]
    易贤, 郭龙, 符澄, 等. 结冰风洞试验段水滴分布特性分析[J]. 实验流体力学, 2016, 30(3): 2-7. DOI: 10.11729/syltlx20160034

    YI X, GUO L, FU C, et al. Analysis of water droplets distribution in the test section of an icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(3): 2-7. doi: 10.11729/syltlx20160034
    [25]
    李维浩, 易贤, 李伟斌, 等. 过冷大水滴变形与破碎的影响因素[J]. 航空学报, 2018, 39(12): 122243. DOI: 10.7527/S1000-6893.2018.22243

    LI W H, YI X, LI W B, et al. Influence factors on deformation and breakup of supercooled large droplets[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12): 122243. doi: 10.7527/S1000-6893.2018.22243
  • Related Articles

    [1]DU Baihe, ZHANG Songhe, GE Qiang, WANG Maogang. Study on flow field characteristics of inert gas-air hybrid arc[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(5): 69-75. DOI: 10.11729/syltlx20210052
    [2]ZHANG Xinghuan, ZHANG Pingtao, PENG Bo, YI Xian. Prediction of icing wind tunnel temperature field with machine learning[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(5): 8-15. DOI: 10.11729/syltlx20210196
    [3]Fu Cheng, Zhao Bo, Xu Dachuan, Liao Daxiong, Pei Haitao, Zhu Bo, Qin Honggang. Investigation on flow turbulent characteristics of plate-fin and tube-fin heat exchanger[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(6): 22-27. DOI: 10.11729/syltlx20190036
    [4]Wang Feng, Xu Jinglei, Wang Yangsheng. Study of flow field characteristics of an over-under TBCC exhaust system during mode transition process[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 68-75. DOI: 10.11729/syltlx20190037
    [5]Gong Jishuang, Zhou Lin, Zhang Yining, Teng Honghui. Investigation on flow field structure of rotating detonation using the method of characteristics[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(1): 89-96. DOI: 10.11729/syltlx20180072
    [6]Liao Daxiong, Chen Jiming, Zheng Juan, Chen Qin, Pei Haitao, Wu Shenghao. General performance of 0.6m continuous transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6): 88-93. DOI: 10.11729/syltlx20170086
    [7]Yang Hong, Luo Yue, Wu Dong, Zhou Ping. Study on supersonic turbulence plate ablation flow field in arc heater[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(4): 72-77. DOI: 10.11729/syltlx20170181
    [8]Yu Mingxing, Bai Shuxin, Xu Xiaoliang, Cao Zhanwei. Research on method for evaluating the thermal protective performance of non-catalysis material in non-equilibrium flow[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(4): 84-89. DOI: 10.11729/syltlx20170084
    [9]Luo Yue, Zhou Wei, Yang Hong, Chen Wei. CFD analysis of the arc heater turbulent flow field of flat plate testing[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(2): 86-92. DOI: 10.11729/syltlx20160088
    [10]Yang Bo, Liu Sen. Investigation of the performance of flow field in supersonic/hypersonic wind tunnel with different test section geometry configurations[J]. Journal of Experiments in Fluid Mechanics, 2014, (4): 59-64. DOI: 10.11729/syltlx20130023
  • Cited by

    Periodical cited type(18)

    1. 韩笑,高创,郑怡彤,刘小兵. 切角凹槽矩形截面桥塔的气动特性试验研究. 石家庄铁道大学学报(自然科学版). 2024(01): 9-15+23 .
    2. 白桦,刘博祥,姬乃川,李加武. 节段模型二元端板合理尺寸估算方法. 振动与冲击. 2023(02): 312-320 .
    3. 王仰雪,刘庆宽,靖洪淼,李震,孙一飞. 倾斜栏杆对流线型箱梁涡激振动性能影响的试验研究. 振动与冲击. 2023(06): 232-239+254 .
    4. 于畅,仇法梅,田学东,杨群,刘小兵. 圆角矩形柱平均气动力特性的雷诺数效应试验研究. 石家庄铁道大学学报(自然科学版). 2023(02): 29-34 .
    5. 杨群,于畅,刘小兵,刘庆宽. 不同圆角率的方形断面斯特罗哈数的雷诺数效应研究. 振动与冲击. 2023(11): 223-231 .
    6. 刘庆宽,王仰雪,孙一飞,李震,韩原,靖洪淼. 栏杆高度对流线型箱梁涡振性能影响的试验研究. 湖南大学学报(自然科学版). 2023(07): 140-150 .
    7. 刘路路,杨皓然,邹云峰,何旭辉,韩艳,陈志强. 公铁同层双幅非对称主梁气动干扰特性研究. 铁道科学与工程学报. 2023(10): 3861-3872 .
    8. 杨群,于畅,于文文,刘小兵. 圆角方柱气动特性的风洞试验研究. 振动与冲击. 2023(24): 59-68 .
    9. 韩振,李波,甄伟,杨庆山,田玉基. 宽厚比为5的超高层建筑风荷载特性研究. 哈尔滨工程大学学报. 2022(02): 196-202 .
    10. 张庆华,马文勇,杨杰,张彦,周帅伟. 不同风倾角下典型等边角钢静风力风洞试验研究. 振动工程学报. 2022(02): 277-283 .
    11. 白桦,王涵,姬乃川,李加武. 节段模型长宽比对风洞测力试验及计算分析的影响. 中国公路学报. 2022(08): 202-212 .
    12. 杨群,刘庆宽,韩瑞,刘小兵. 不同圆角率的方形断面气动特性的雷诺数效应. 振动与冲击. 2020(04): 150-156 .
    13. 沈国辉,姚剑锋,郭勇,邢月龙,楼文娟. 直径30 cm圆柱的气动力参数和绕流特性研究. 振动与冲击. 2020(06): 22-28 .
    14. 温青,池俊豪,华旭刚,王修勇,孙洪鑫. 端部条件和展弦比对矩形断面节段模型气动力特征的影响. 实验流体力学. 2020(04): 36-43 . 本站查看
    15. 任若松,梁新华,刘小兵,马文勇,刘庆宽. 准流线型桥梁断面气动力特性的雷诺数效应研究. 工程力学. 2020(S1): 139-144+167 .
    16. 李海飞,梁新华,孙一飞,崔会敏,刘庆宽. 流线型桥梁断面表面脉动风荷载特性研究. 工程力学. 2020(S1): 242-248+260 .
    17. 马文勇,汪冠亚,郑熙,陈铁,李智,张程远,方平治. 端部状态对斜置圆柱气动力分布的影响. 实验流体力学. 2019(02): 43-50 . 本站查看
    31. 杨群,刘庆宽,孙亚松,刘小兵. 圆角方形断面气动特性试验. 振动.测试与诊断. 2020(01): 140-147+208 .

    Other cited types(16)

Catalog

    Article Metrics

    Article views (659) PDF downloads (44) Cited by(34)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close