SHEN G H,ZHANG S G,YU S C. Wind field characteristics on a bridge site under complex mountain terrain[J]. Journal of Experiments in Fluid Mechanics, 2021,35(4):26-33.. DOI: 10.11729/syltlx20200020
Citation: SHEN G H,ZHANG S G,YU S C. Wind field characteristics on a bridge site under complex mountain terrain[J]. Journal of Experiments in Fluid Mechanics, 2021,35(4):26-33.. DOI: 10.11729/syltlx20200020

Wind field characteristics on a bridge site under complex mountain terrain

More Information
  • Received Date: February 23, 2020
  • Revised Date: May 23, 2020
  • Available Online: August 25, 2021
  • In order to obtain wind field characteristics on a bridge site on a complex mountain terrain, small-scale topographic wind-tunnel model tests are employed. The variation characteristics of the mean wind speed, wind attack angle, turbulent intensity and turbulence integral scale with respect to the wind azimuth and measuring point position are analyzed. The changes of the wind speed spectrum of typical measuring points on the complex mountain terrain are also studied. The results show that the mean wind speeds of all the measuring points on the bridge site are less than that of the gradient height. When wind blows along the valley, significant positive attack angles are produced due to the wind climbing effect, with the maximum value reaching +35.3°. The along-wind and crosswind turbulent intensities in this wind direction reach their minimum values as low as nearly 10%, and become larger in other wind directions. The turbulence integral scale in this direction is much larger than that in other directions, and increases with the increasing height of the measuring point. The wind speed power spectrum in the direction has significant differences compared with the incoming wind speed spectrum, of which the energy in the high frequency section increases significantly and the feature of the single peak diminishes.
  • [1]
    中华人民共和国交通运输部. 公路桥梁抗风设计规范: JTG/T 3360-01—2018[S]. 北京: 人民交通出版社, 2018.

    Ministry of Transport of the People’s Republic of China. Wind-resistant design specification for highway bridges: JTG/T 3360-01—2018[S]. Beijing: China Communications Press, 2018.
    [2]
    CHOCK G Y K,COCHRAN L. Modeling of topographic wind speed effects in Hawaii[J]. Journal of Wind Engineering and Industrial Aerodynamics,2005,93(8):623-638. doi: 10.1016/j.jweia.2005.06.002
    [3]
    MERONEY R N. Wind-tunnel simulation of the flow over hills and complex terrain[J]. Journal of Wind Engineering and Industrial Aerodynamics,1980,5(3-4):297-321. doi: 10.1016/0167-6105(80)90039-2
    [4]
    TEUNISSEN H W,SHOKR M E,BOWEN A J,et al. The Askervein Hill Project: Wind-tunnel simulations at three length scales[J]. Boundary-Layer Meteorology,1987,40(1-2):1-29. doi: 10.1007/BF00140067
    [5]
    LUBITZ W D,WHITE B R. Wind-tunnel and field investigation of the effect of local wind direction on speed-up over hills[J]. Journal of Wind Engineering and Industrial Aerodynamics,2007,95(8):639-661. doi: 10.1016/j.jweia.2006.09.001
    [6]
    CARPENTER P,LOCKE N. Investigation of wind speeds over multiple two-dimensional hills[J]. Journal of Wind Engineering and Industrial Aerodynamics,1999,83(1-3):109-120. doi: 10.1016/S0167-6105(99)00065-3
    [7]
    沈国辉,翁文涛,王轶文,等. 某复杂山体的三维风场特征研究[J]. 振动与冲击,2020,39(4):75-80. DOI: 10.13465/j.cnki.jvs.2020.04.009

    SHEN G H,WENG W T,WANG Y W,et al. A study on three-dimensional wind field characteristics of a complex hill[J]. Journal of Vibration and Shock,2020,39(4):75-80. doi: 10.13465/j.cnki.jvs.2020.04.009
    [8]
    陈政清,李春光,张志田,等. 山区峡谷地带大跨度桥梁风场特性试验[J]. 实验流体力学,2008,22(3):54-59, 67.

    CHEN Z Q,LI C G,ZHANG Z T,et al. Model test study of wind field characteristics of long-span bridge site in mountainous valley terrain[J]. Journal of Experiments in Fluid Mechanics,2008,22(3):54-59, 67.
    [9]
    庞加斌,宋锦忠,林志兴. 山区峡谷桥梁抗风设计风速的确定方法[J]. 中国公路学报,2008,21(5):39-44. DOI: 10.19721/j.cnki.1001-7372.2008.05.008

    PANG J B,SONG J Z,LIN Z X. Determination method for wind-resistant design wind speed of mountainous-valley bridge[J]. China Journal of Highway and Transport,2008,21(5):39-44. doi: 10.19721/j.cnki.1001-7372.2008.05.008
    [10]
    刘黎阳,张志田,汪志雄,等. 不同规模地形模型对某山区桥梁设计风特性确定的影响[J]. 实验流体力学,2018,32(6):49-54. DOI: 10.11729/syltlx20170140

    LIU L Y,ZHANG Z T,WANG Z X,et al. Scope effects of terrain models on wind properties design of a bridge located at mountainous area[J]. Journal of Experiments in Fluid Mechanics,2018,32(6):49-54. doi: 10.11729/syltlx20170140
    [11]
    张宏杰,赵金飞,蔡达章,等. 垭口地貌要素对风速分布规律影响的风洞试验研究[J]. 实验流体力学,2014,28(4):25-30. DOI: 10.11729/syltlx20130044

    ZHANG H J,ZHAO J F,CAI D Z,et al. Wind tunnel test on the influence of col features on wind speed distribution[J]. Journal of Experiments in Fluid Mechanics,2014,28(4):25-30. doi: 10.11729/syltlx20130044
    [12]
    庞加斌,宋锦忠,林志兴. 四渡河峡谷大桥桥位风的湍流特性实测分析[J]. 中国公路学报,2010,23(3):42-47. DOI: 10.19721/j.cnki.1001-7372.2010.03.007

    PANG J B,SONG J Z,LIN Z X. Field measurement analysis of wind turbulence characteristics of Sidu river valley bridge site[J]. China Journal of Highway and Transport,2010,23(3):42-47. doi: 10.19721/j.cnki.1001-7372.2010.03.007
    [13]
    HUI M C H,LARSEN A,XIANG H F. Wind turbulence characteristics study at the Stonecutters Bridge site: Part I—Mean wind and turbulence intensities[J]. Journal of Wind Engineering and Industrial Aerodynamics,2009,97(1):22-36. doi: 10.1016/j.jweia.2008.11.002
    [14]
    HUI M C H,LARSEN A,XIANG H F. Wind turbulence characteristics study at the Stonecutters Bridge site: Part Ⅱ: Wind power spectra, integral length scales and coherences[J]. Journal of Wind Engineering and Industrial Aerodynamics,2009,97(1):48-59. doi: 10.1016/j.jweia.2008.11.003
    [15]
    于舰涵,李明水,廖海黎. 山区地形对桥位风场影响的数值模拟[J]. 西南交通大学学报,2016,51(4):654-662. DOI: 10.3969/j.issn.0258-2724.2016.04.008

    YU J H,LI M S,LIAO H L. Numerical simulation of effect of mountainous topography on wind field at bridge site[J]. Journal of Southwest Jiaotong University,2016,51(4):654-662. doi: 10.3969/j.issn.0258-2724.2016.04.008
    [16]
    HUANG G Q,CHENG X,PENG L L,et al. Aerodynamic shape of transition curve for truncated mountainous terrain model in wind field simulation[J]. Journal of Wind Engineering and Industrial Aerodynamics,2018,178:80-90. doi: 10.1016/j.jweia.2018.05.008
    [17]
    胡朋,李永乐,廖海黎. 山区峡谷桥址区地形模型边界过渡段形式研究[J]. 空气动力学学报,2013,31(2):231-238. DOI: 10.7638/kqdlxxb-2011.0184

    HU P,LI Y L,LIAO H L. Shape of boundary transition section for mountains-gorge bridge site terrain model[J]. Acta Aerodynamica Sinica,2013,31(2):231-238. doi: 10.7638/kqdlxxb-2011.0184
    [18]
    余世策,陈勇,李庆祥,等. 建筑风环境风洞试验中风速探头的研制与应用[J]. 实验流体力学,2013,27(4):83-87. DOI: 10.3969/j.issn.1672-9897.2013.04.015

    YU S C,CHEN Y,LI Q X,et al. Development and application of wind speed probe for wind tunnel test of wind environment around buildings[J]. Journal of Experiments in Fluid Mechanics,2013,27(4):83-87. doi: 10.3969/j.issn.1672-9897.2013.04.015
    [19]
    中华人民共和国住房和城乡建设部. 建筑工程风洞试验方法标准: JGJ/T 338—2014[S]. 北京: 中国建筑工业出版社, 2015.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for wind tunnel test of buildings and structures: JGJ/T 338—2014[S]. Beijing: China Architecture & Building Press, 2015.
    [20]
    SIMIU E, SCANLAN R H. Wind effects on structure[M]. 3rd ed. New York: Wiley InterScience, 1996.
    [21]
    FLAY R G J,STEVENSON D C. Integral length scales in strong winds below 20 m[J]. Journal of Wind Engineering and Industrial Aerodynamics,1988,28(1-3):21-30. doi: 10.1016/0167-6105(88)90098-0
  • Related Articles

    [1]LI Meng, ZHAO Huiyong, YUAN Qiang, CHEN Li, MU Jinhe. Experimental research on the influence of turbulence intensity on boundary layer transition in Mach 3 supersonic flow[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(6): 56-64. DOI: 10.11729/syltlx20220087
    [2]LIANG Zhi, HU Fei, SHI Yu, ZHANG Zhe, LIU Lei. Research of mast shadow effect on the average wind speed and turbulence intensity by field experiment[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(2): 88-97. DOI: 10.11729/syltlx20220010
    [3]ZHU Bo, CHEN Jiming, WU Wei, PEI Haitao. Experimental investigation of turbulence intensity measurement in continuous transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics. DOI: 10.11729/syltlx20220034
    [4]YANG Junwei, YANG Hua, FU Shifeng, ZONG Wangwang, SHA Chenglong. Wind tunnel experimental study of the grille-generated turbulence in the short test section[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(6): 86-93. DOI: 10.11729/syltlx20210042
    [5]HU Shangyu, LI Qiusheng, ZHANG Ming. Active turbulence simulation study of wind loads on standard low-rise building[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(4): 22-29. DOI: 10.11729/syltlx20190157
    [6]Yu Qianqian, Wang Jinhua, Zhang Weijie, Zhang Meng, Huang Zuohua. Development of scale-controlled premixed turbulent burner and the flame structure analysis[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(2): 10-17. DOI: 10.11729/syltlx20170150
    [7]Ma Ziran, Xu Minyi, Luan Jian, Liu Xiaopeng, Zhao Feifei. Statistical properties of turbulent free jets issuing from rectangular nozzles with different aspect ratios[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(1): 54-61. DOI: 10.11729/syltlx20160116
    [8]Zhu Bo, Peng Qiang, Tang Gengsheng. Digital signal process of low turbulence intensity based on EMD[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(5): 74-79. DOI: 10.11729/syltlx20150148
    [9]WU Wen-fei, XIE Jing-xing, GONG Zhi-jun, LI Bao-wei. PIV measurements of the turbulence integral length scale on cold combustion flow field in burner zone of tangential firing boiler[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(2): 38-41,50. DOI: 10.3969/j.issn.1672-9897.2012.02.008
    [10]LIU Gang, WANG Yang, WANG Xue-yan, SHI Jia-tao, WANG Jing. PIV measurements of the ILS on in-cylinder gas turbulent flow field of gasoline engine[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(1): 59-63,67. DOI: 10.3969/j.issn.1672-9897.2007.01.012
  • Cited by

    Periodical cited type(7)

    1. 郭沛洋,张毅,张梦卓,胡海豹. 亲水-超疏水相间表面通气减阻实验研究. 力学学报. 2024(01): 94-100 .
    2. 秦立果,刘建波,李航,卢山,马泽宇,王征,董光能. 水下湍流减阻技术研究进展. 表面技术. 2024(16): 1-18 .
    3. 张春来,张丽霞,王潇,吴银涛,王波. 沟槽型微纳复合结构表面的制备与减阻性能研究. 材料导报. 2023(12): 239-243 .
    4. 张奕,潘翀,窦建宇,张淼. 微型涡流发生器影响下的湍流边界层流场与摩阻特性. 实验流体力学. 2023(04): 48-58 . 本站查看
    5. 李茂林,张浩,玄克勇,石若冉,张志. 壁面微沟槽减阻技术研究进展. 煤气与热力. 2023(10): 12-19 .
    6. 李炳炘,张浩,玄克勇,孙国梁. 微沟槽减阻技术研究现状与进展综述. 煤气与热力. 2023(12): 21-27 .
    7. 罗忠,刘凯,周欣,胡俊波. 水下目标壳体复合涂层阻力试验. 船舶工程. 2022(09): 147-151 .

    Other cited types(9)

Catalog

    Article Metrics

    Article views (726) PDF downloads (48) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close