Citation: | SHEN G H,ZHANG S G,YU S C. Wind field characteristics on a bridge site under complex mountain terrain[J]. Journal of Experiments in Fluid Mechanics, 2021,35(4):26-33.. DOI: 10.11729/syltlx20200020 |
[1] |
中华人民共和国交通运输部. 公路桥梁抗风设计规范: JTG/T 3360-01—2018[S]. 北京: 人民交通出版社, 2018.
Ministry of Transport of the People’s Republic of China. Wind-resistant design specification for highway bridges: JTG/T 3360-01—2018[S]. Beijing: China Communications Press, 2018.
|
[2] |
CHOCK G Y K,COCHRAN L. Modeling of topographic wind speed effects in Hawaii[J]. Journal of Wind Engineering and Industrial Aerodynamics,2005,93(8):623-638. doi: 10.1016/j.jweia.2005.06.002
|
[3] |
MERONEY R N. Wind-tunnel simulation of the flow over hills and complex terrain[J]. Journal of Wind Engineering and Industrial Aerodynamics,1980,5(3-4):297-321. doi: 10.1016/0167-6105(80)90039-2
|
[4] |
TEUNISSEN H W,SHOKR M E,BOWEN A J,et al. The Askervein Hill Project: Wind-tunnel simulations at three length scales[J]. Boundary-Layer Meteorology,1987,40(1-2):1-29. doi: 10.1007/BF00140067
|
[5] |
LUBITZ W D,WHITE B R. Wind-tunnel and field investigation of the effect of local wind direction on speed-up over hills[J]. Journal of Wind Engineering and Industrial Aerodynamics,2007,95(8):639-661. doi: 10.1016/j.jweia.2006.09.001
|
[6] |
CARPENTER P,LOCKE N. Investigation of wind speeds over multiple two-dimensional hills[J]. Journal of Wind Engineering and Industrial Aerodynamics,1999,83(1-3):109-120. doi: 10.1016/S0167-6105(99)00065-3
|
[7] |
沈国辉,翁文涛,王轶文,等. 某复杂山体的三维风场特征研究[J]. 振动与冲击,2020,39(4):75-80. DOI: 10.13465/j.cnki.jvs.2020.04.009
SHEN G H,WENG W T,WANG Y W,et al. A study on three-dimensional wind field characteristics of a complex hill[J]. Journal of Vibration and Shock,2020,39(4):75-80. doi: 10.13465/j.cnki.jvs.2020.04.009
|
[8] |
陈政清,李春光,张志田,等. 山区峡谷地带大跨度桥梁风场特性试验[J]. 实验流体力学,2008,22(3):54-59, 67.
CHEN Z Q,LI C G,ZHANG Z T,et al. Model test study of wind field characteristics of long-span bridge site in mountainous valley terrain[J]. Journal of Experiments in Fluid Mechanics,2008,22(3):54-59, 67.
|
[9] |
庞加斌,宋锦忠,林志兴. 山区峡谷桥梁抗风设计风速的确定方法[J]. 中国公路学报,2008,21(5):39-44. DOI: 10.19721/j.cnki.1001-7372.2008.05.008
PANG J B,SONG J Z,LIN Z X. Determination method for wind-resistant design wind speed of mountainous-valley bridge[J]. China Journal of Highway and Transport,2008,21(5):39-44. doi: 10.19721/j.cnki.1001-7372.2008.05.008
|
[10] |
刘黎阳,张志田,汪志雄,等. 不同规模地形模型对某山区桥梁设计风特性确定的影响[J]. 实验流体力学,2018,32(6):49-54. DOI: 10.11729/syltlx20170140
LIU L Y,ZHANG Z T,WANG Z X,et al. Scope effects of terrain models on wind properties design of a bridge located at mountainous area[J]. Journal of Experiments in Fluid Mechanics,2018,32(6):49-54. doi: 10.11729/syltlx20170140
|
[11] |
张宏杰,赵金飞,蔡达章,等. 垭口地貌要素对风速分布规律影响的风洞试验研究[J]. 实验流体力学,2014,28(4):25-30. DOI: 10.11729/syltlx20130044
ZHANG H J,ZHAO J F,CAI D Z,et al. Wind tunnel test on the influence of col features on wind speed distribution[J]. Journal of Experiments in Fluid Mechanics,2014,28(4):25-30. doi: 10.11729/syltlx20130044
|
[12] |
庞加斌,宋锦忠,林志兴. 四渡河峡谷大桥桥位风的湍流特性实测分析[J]. 中国公路学报,2010,23(3):42-47. DOI: 10.19721/j.cnki.1001-7372.2010.03.007
PANG J B,SONG J Z,LIN Z X. Field measurement analysis of wind turbulence characteristics of Sidu river valley bridge site[J]. China Journal of Highway and Transport,2010,23(3):42-47. doi: 10.19721/j.cnki.1001-7372.2010.03.007
|
[13] |
HUI M C H,LARSEN A,XIANG H F. Wind turbulence characteristics study at the Stonecutters Bridge site: Part I—Mean wind and turbulence intensities[J]. Journal of Wind Engineering and Industrial Aerodynamics,2009,97(1):22-36. doi: 10.1016/j.jweia.2008.11.002
|
[14] |
HUI M C H,LARSEN A,XIANG H F. Wind turbulence characteristics study at the Stonecutters Bridge site: Part Ⅱ: Wind power spectra, integral length scales and coherences[J]. Journal of Wind Engineering and Industrial Aerodynamics,2009,97(1):48-59. doi: 10.1016/j.jweia.2008.11.003
|
[15] |
于舰涵,李明水,廖海黎. 山区地形对桥位风场影响的数值模拟[J]. 西南交通大学学报,2016,51(4):654-662. DOI: 10.3969/j.issn.0258-2724.2016.04.008
YU J H,LI M S,LIAO H L. Numerical simulation of effect of mountainous topography on wind field at bridge site[J]. Journal of Southwest Jiaotong University,2016,51(4):654-662. doi: 10.3969/j.issn.0258-2724.2016.04.008
|
[16] |
HUANG G Q,CHENG X,PENG L L,et al. Aerodynamic shape of transition curve for truncated mountainous terrain model in wind field simulation[J]. Journal of Wind Engineering and Industrial Aerodynamics,2018,178:80-90. doi: 10.1016/j.jweia.2018.05.008
|
[17] |
胡朋,李永乐,廖海黎. 山区峡谷桥址区地形模型边界过渡段形式研究[J]. 空气动力学学报,2013,31(2):231-238. DOI: 10.7638/kqdlxxb-2011.0184
HU P,LI Y L,LIAO H L. Shape of boundary transition section for mountains-gorge bridge site terrain model[J]. Acta Aerodynamica Sinica,2013,31(2):231-238. doi: 10.7638/kqdlxxb-2011.0184
|
[18] |
余世策,陈勇,李庆祥,等. 建筑风环境风洞试验中风速探头的研制与应用[J]. 实验流体力学,2013,27(4):83-87. DOI: 10.3969/j.issn.1672-9897.2013.04.015
YU S C,CHEN Y,LI Q X,et al. Development and application of wind speed probe for wind tunnel test of wind environment around buildings[J]. Journal of Experiments in Fluid Mechanics,2013,27(4):83-87. doi: 10.3969/j.issn.1672-9897.2013.04.015
|
[19] |
中华人民共和国住房和城乡建设部. 建筑工程风洞试验方法标准: JGJ/T 338—2014[S]. 北京: 中国建筑工业出版社, 2015.
Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for wind tunnel test of buildings and structures: JGJ/T 338—2014[S]. Beijing: China Architecture & Building Press, 2015.
|
[20] |
SIMIU E, SCANLAN R H. Wind effects on structure[M]. 3rd ed. New York: Wiley InterScience, 1996.
|
[21] |
FLAY R G J,STEVENSON D C. Integral length scales in strong winds below 20 m[J]. Journal of Wind Engineering and Industrial Aerodynamics,1988,28(1-3):21-30. doi: 10.1016/0167-6105(88)90098-0
|
[1] | LI Meng, ZHAO Huiyong, YUAN Qiang, CHEN Li, MU Jinhe. Experimental research on the influence of turbulence intensity on boundary layer transition in Mach 3 supersonic flow[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(6): 56-64. DOI: 10.11729/syltlx20220087 |
[2] | LIANG Zhi, HU Fei, SHI Yu, ZHANG Zhe, LIU Lei. Research of mast shadow effect on the average wind speed and turbulence intensity by field experiment[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(2): 88-97. DOI: 10.11729/syltlx20220010 |
[3] | ZHU Bo, CHEN Jiming, WU Wei, PEI Haitao. Experimental investigation of turbulence intensity measurement in continuous transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics. DOI: 10.11729/syltlx20220034 |
[4] | YANG Junwei, YANG Hua, FU Shifeng, ZONG Wangwang, SHA Chenglong. Wind tunnel experimental study of the grille-generated turbulence in the short test section[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(6): 86-93. DOI: 10.11729/syltlx20210042 |
[5] | HU Shangyu, LI Qiusheng, ZHANG Ming. Active turbulence simulation study of wind loads on standard low-rise building[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(4): 22-29. DOI: 10.11729/syltlx20190157 |
[6] | Yu Qianqian, Wang Jinhua, Zhang Weijie, Zhang Meng, Huang Zuohua. Development of scale-controlled premixed turbulent burner and the flame structure analysis[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(2): 10-17. DOI: 10.11729/syltlx20170150 |
[7] | Ma Ziran, Xu Minyi, Luan Jian, Liu Xiaopeng, Zhao Feifei. Statistical properties of turbulent free jets issuing from rectangular nozzles with different aspect ratios[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(1): 54-61. DOI: 10.11729/syltlx20160116 |
[8] | Zhu Bo, Peng Qiang, Tang Gengsheng. Digital signal process of low turbulence intensity based on EMD[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(5): 74-79. DOI: 10.11729/syltlx20150148 |
[9] | WU Wen-fei, XIE Jing-xing, GONG Zhi-jun, LI Bao-wei. PIV measurements of the turbulence integral length scale on cold combustion flow field in burner zone of tangential firing boiler[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(2): 38-41,50. DOI: 10.3969/j.issn.1672-9897.2012.02.008 |
[10] | LIU Gang, WANG Yang, WANG Xue-yan, SHI Jia-tao, WANG Jing. PIV measurements of the ILS on in-cylinder gas turbulent flow field of gasoline engine[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(1): 59-63,67. DOI: 10.3969/j.issn.1672-9897.2007.01.012 |
1. |
郭沛洋,张毅,张梦卓,胡海豹. 亲水-超疏水相间表面通气减阻实验研究. 力学学报. 2024(01): 94-100 .
![]() | |
2. |
秦立果,刘建波,李航,卢山,马泽宇,王征,董光能. 水下湍流减阻技术研究进展. 表面技术. 2024(16): 1-18 .
![]() | |
3. |
张春来,张丽霞,王潇,吴银涛,王波. 沟槽型微纳复合结构表面的制备与减阻性能研究. 材料导报. 2023(12): 239-243 .
![]() | |
4. |
张奕,潘翀,窦建宇,张淼. 微型涡流发生器影响下的湍流边界层流场与摩阻特性. 实验流体力学. 2023(04): 48-58 .
![]() | |
5. |
李茂林,张浩,玄克勇,石若冉,张志. 壁面微沟槽减阻技术研究进展. 煤气与热力. 2023(10): 12-19 .
![]() | |
6. |
李炳炘,张浩,玄克勇,孙国梁. 微沟槽减阻技术研究现状与进展综述. 煤气与热力. 2023(12): 21-27 .
![]() | |
7. |
罗忠,刘凯,周欣,胡俊波. 水下目标壳体复合涂层阻力试验. 船舶工程. 2022(09): 147-151 .
![]() |