Volume 35 Issue 4
Aug.  2021
Turn off MathJax
Article Contents
SHEN G H,ZHANG S G,YU S C. Wind field characteristics on a bridge site under complex mountain terrain[J]. Journal of Experiments in Fluid Mechanics, 2021,35(4):26-33. doi: 10.11729/syltlx20200020
Citation: SHEN G H,ZHANG S G,YU S C. Wind field characteristics on a bridge site under complex mountain terrain[J]. Journal of Experiments in Fluid Mechanics, 2021,35(4):26-33. doi: 10.11729/syltlx20200020

Wind field characteristics on a bridge site under complex mountain terrain

doi: 10.11729/syltlx20200020
  • Received Date: 2020-02-24
  • Rev Recd Date: 2020-05-24
  • Available Online: 2021-08-26
  • Publish Date: 2021-08-25
  • In order to obtain wind field characteristics on a bridge site on a complex mountain terrain, small-scale topographic wind-tunnel model tests are employed. The variation characteristics of the mean wind speed, wind attack angle, turbulent intensity and turbulence integral scale with respect to the wind azimuth and measuring point position are analyzed. The changes of the wind speed spectrum of typical measuring points on the complex mountain terrain are also studied. The results show that the mean wind speeds of all the measuring points on the bridge site are less than that of the gradient height. When wind blows along the valley, significant positive attack angles are produced due to the wind climbing effect, with the maximum value reaching +35.3°. The along-wind and crosswind turbulent intensities in this wind direction reach their minimum values as low as nearly 10%, and become larger in other wind directions. The turbulence integral scale in this direction is much larger than that in other directions, and increases with the increasing height of the measuring point. The wind speed power spectrum in the direction has significant differences compared with the incoming wind speed spectrum, of which the energy in the high frequency section increases significantly and the feature of the single peak diminishes.
  • loading
  • [1]
    中华人民共和国交通运输部. 公路桥梁抗风设计规范: JTG/T 3360-01—2018[S]. 北京: 人民交通出版社, 2018.

    Ministry of Transport of the People’s Republic of China. Wind-resistant design specification for highway bridges: JTG/T 3360-01—2018[S]. Beijing: China Communications Press, 2018.
    [2]
    CHOCK G Y K,COCHRAN L. Modeling of topographic wind speed effects in Hawaii[J]. Journal of Wind Engineering and Industrial Aerodynamics,2005,93(8):623-638. doi: 10.1016/j.jweia.2005.06.002
    [3]
    MERONEY R N. Wind-tunnel simulation of the flow over hills and complex terrain[J]. Journal of Wind Engineering and Industrial Aerodynamics,1980,5(3-4):297-321. doi: 10.1016/0167-6105(80)90039-2
    [4]
    TEUNISSEN H W,SHOKR M E,BOWEN A J,et al. The Askervein Hill Project: Wind-tunnel simulations at three length scales[J]. Boundary-Layer Meteorology,1987,40(1-2):1-29. doi: 10.1007/BF00140067
    [5]
    LUBITZ W D,WHITE B R. Wind-tunnel and field investigation of the effect of local wind direction on speed-up over hills[J]. Journal of Wind Engineering and Industrial Aerodynamics,2007,95(8):639-661. doi: 10.1016/j.jweia.2006.09.001
    [6]
    CARPENTER P,LOCKE N. Investigation of wind speeds over multiple two-dimensional hills[J]. Journal of Wind Engineering and Industrial Aerodynamics,1999,83(1-3):109-120. doi: 10.1016/S0167-6105(99)00065-3
    [7]
    沈国辉,翁文涛,王轶文,等. 某复杂山体的三维风场特征研究[J]. 振动与冲击,2020,39(4):75-80. doi: 10.13465/j.cnki.jvs.2020.04.009

    SHEN G H,WENG W T,WANG Y W,et al. A study on three-dimensional wind field characteristics of a complex hill[J]. Journal of Vibration and Shock,2020,39(4):75-80. doi: 10.13465/j.cnki.jvs.2020.04.009
    [8]
    陈政清,李春光,张志田,等. 山区峡谷地带大跨度桥梁风场特性试验[J]. 实验流体力学,2008,22(3):54-59, 67.

    CHEN Z Q,LI C G,ZHANG Z T,et al. Model test study of wind field characteristics of long-span bridge site in mountainous valley terrain[J]. Journal of Experiments in Fluid Mechanics,2008,22(3):54-59, 67.
    [9]
    庞加斌,宋锦忠,林志兴. 山区峡谷桥梁抗风设计风速的确定方法[J]. 中国公路学报,2008,21(5):39-44. doi: 10.19721/j.cnki.1001-7372.2008.05.008

    PANG J B,SONG J Z,LIN Z X. Determination method for wind-resistant design wind speed of mountainous-valley bridge[J]. China Journal of Highway and Transport,2008,21(5):39-44. doi: 10.19721/j.cnki.1001-7372.2008.05.008
    [10]
    刘黎阳,张志田,汪志雄,等. 不同规模地形模型对某山区桥梁设计风特性确定的影响[J]. 实验流体力学,2018,32(6):49-54. doi: 10.11729/syltlx20170140

    LIU L Y,ZHANG Z T,WANG Z X,et al. Scope effects of terrain models on wind properties design of a bridge located at mountainous area[J]. Journal of Experiments in Fluid Mechanics,2018,32(6):49-54. doi: 10.11729/syltlx20170140
    [11]
    张宏杰,赵金飞,蔡达章,等. 垭口地貌要素对风速分布规律影响的风洞试验研究[J]. 实验流体力学,2014,28(4):25-30. doi: 10.11729/syltlx20130044

    ZHANG H J,ZHAO J F,CAI D Z,et al. Wind tunnel test on the influence of col features on wind speed distribution[J]. Journal of Experiments in Fluid Mechanics,2014,28(4):25-30. doi: 10.11729/syltlx20130044
    [12]
    庞加斌,宋锦忠,林志兴. 四渡河峡谷大桥桥位风的湍流特性实测分析[J]. 中国公路学报,2010,23(3):42-47. doi: 10.19721/j.cnki.1001-7372.2010.03.007

    PANG J B,SONG J Z,LIN Z X. Field measurement analysis of wind turbulence characteristics of Sidu river valley bridge site[J]. China Journal of Highway and Transport,2010,23(3):42-47. doi: 10.19721/j.cnki.1001-7372.2010.03.007
    [13]
    HUI M C H,LARSEN A,XIANG H F. Wind turbulence characteristics study at the Stonecutters Bridge site: Part I—Mean wind and turbulence intensities[J]. Journal of Wind Engineering and Industrial Aerodynamics,2009,97(1):22-36. doi: 10.1016/j.jweia.2008.11.002
    [14]
    HUI M C H,LARSEN A,XIANG H F. Wind turbulence characteristics study at the Stonecutters Bridge site: Part Ⅱ: Wind power spectra, integral length scales and coherences[J]. Journal of Wind Engineering and Industrial Aerodynamics,2009,97(1):48-59. doi: 10.1016/j.jweia.2008.11.003
    [15]
    于舰涵,李明水,廖海黎. 山区地形对桥位风场影响的数值模拟[J]. 西南交通大学学报,2016,51(4):654-662. doi: 10.3969/j.issn.0258-2724.2016.04.008

    YU J H,LI M S,LIAO H L. Numerical simulation of effect of mountainous topography on wind field at bridge site[J]. Journal of Southwest Jiaotong University,2016,51(4):654-662. doi: 10.3969/j.issn.0258-2724.2016.04.008
    [16]
    HUANG G Q,CHENG X,PENG L L,et al. Aerodynamic shape of transition curve for truncated mountainous terrain model in wind field simulation[J]. Journal of Wind Engineering and Industrial Aerodynamics,2018,178:80-90. doi: 10.1016/j.jweia.2018.05.008
    [17]
    胡朋,李永乐,廖海黎. 山区峡谷桥址区地形模型边界过渡段形式研究[J]. 空气动力学学报,2013,31(2):231-238. doi: 10.7638/kqdlxxb-2011.0184

    HU P,LI Y L,LIAO H L. Shape of boundary transition section for mountains-gorge bridge site terrain model[J]. Acta Aerodynamica Sinica,2013,31(2):231-238. doi: 10.7638/kqdlxxb-2011.0184
    [18]
    余世策,陈勇,李庆祥,等. 建筑风环境风洞试验中风速探头的研制与应用[J]. 实验流体力学,2013,27(4):83-87. doi: 10.3969/j.issn.1672-9897.2013.04.015

    YU S C,CHEN Y,LI Q X,et al. Development and application of wind speed probe for wind tunnel test of wind environment around buildings[J]. Journal of Experiments in Fluid Mechanics,2013,27(4):83-87. doi: 10.3969/j.issn.1672-9897.2013.04.015
    [19]
    中华人民共和国住房和城乡建设部. 建筑工程风洞试验方法标准: JGJ/T 338—2014[S]. 北京: 中国建筑工业出版社, 2015.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for wind tunnel test of buildings and structures: JGJ/T 338—2014[S]. Beijing: China Architecture & Building Press, 2015.
    [20]
    SIMIU E, SCANLAN R H. Wind effects on structure[M]. 3rd ed. New York: Wiley InterScience, 1996.
    [21]
    FLAY R G J,STEVENSON D C. Integral length scales in strong winds below 20 m[J]. Journal of Wind Engineering and Industrial Aerodynamics,1988,28(1-3):21-30. doi: 10.1016/0167-6105(88)90098-0
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)

    Article Metrics

    Article views (659) PDF downloads(35) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return