Citation: | YANG Kai, ZHU Tao, WANG Xiong, TAO Bowan, ZHU Xinxin, WANG Hui, YANG Qingtao. Self-innovated ALTP heat-flux sensor and its performance tests[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(6): 86-91. DOI: 10.11729/syltlx20190148 |
[1] |
陈坚强, 涂国华, 张毅锋, 等.高超声速边界层转捩研究现状与发展趋势[J].空气动力学学报, 2017, 35(3):311-337. DOI: 10.7638/kqdlxxb-2017.0030
CHEN J Q, TU G H, ZHANG Y F, et al. Hypersonic boundary layer transition:what we know, where shall we go[J]. Acta Aerodynamica Sinica, 2017, 35(3):311-337. DOI: 10.7638/kqdlxxb-2017.0030
|
[2] |
刘向宏, 赖光伟, 吴杰.高超声速边界层转捩实验综述[J].空气动力学学报, 2018, 36(2):196-212. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201802005.htm
LIU X H, LAI G W, WU J. Boundary-layer transition experiments in hypersonic flow[J]. Acta Aerodynamica Sinica, 2018, 36(2):196-212. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201802005.htm
|
[3] |
SCHNEIDER S P. Developing mechanism-based methods for estimating hypersonic boundary-layer transition in flight:the role of quiet tunnels[J]. Progress in Aerospace Sciences, 2015, 72:17-29 DOI: 10.1016/j.paerosci.2014.09.008
|
[4] |
FUJII K. Experiment of the two-dimensional roughness effect on hypersonic boundary-layer transition[J]. Journal of Spacecraft and Rockets, 2006, 43(4):731-738. DOI: 10.2514/1.17860
|
[5] |
姜楠, 李悦雷.圆柱绕流尾迹对壁湍流相干结构影响的实验研究[J].实验流体力学, 2007, 21(3):8-13. http://www.syltlx.com/CN/abstract/abstract9560.shtml
JIANG N, LI Y L. Experimental study on coherent structures in wall turbulence interacting with a circular cylinder wake[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(3):8-13. http://www.syltlx.com/CN/abstract/abstract9560.shtml
|
[6] |
BERRIDGE D C, CASPER K M, RUFER S J, et al. Measure-ments and computations of second-mode instability waves in three hypersonic wind tunnels[R]. AIAA 2010-5002, 2010.
|
[7] |
ALBA C R, CASPER K M, BERESH S J, et al. Comparison of experimentally measured and computed second-mode distur-bances in hypersonic boundary-layers[R]. AIAA 2010-897, 2010.
|
[8] |
MUNOZ F, HEITMANN D, RADESPIEL R. Instability modes in boundary layers of an inclined cone at Mach 6[J]. Journal of Spacecraft and Rockets, 2014, 51(2):442-454. DOI: 10.2514/1.A32564
|
[9] |
纪锋, 解少飞, 沈清.高超声速1 MHz高频脉动压力测试技术及其应用[J].空气动力学学报, 2016, 34(5):587-591. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201605007.htm
JI F, XIE S F, SHEN Q. Hypersonic high frequency (1MHz) fluctuation pressure testing technology and application[J]. Acta Aerodynamica Sinica, 2016, 34(5):587-591. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201605007.htm
|
[10] |
HOFFERTH J, SARIC W, KUEHL J, et al. Boundary-layer instability and transition on a flared cone in a Mach 6 quiet wind tunnel[J]. International Journal of Engineering Systems Modelling and Simulation, 2013, 5(1):109-124. http://meetings.aps.org/link/BAPS.2010.DFD.CE.4
|
[11] |
LACHOWICZ J T, CHOKANI N, WILKINSON S P. Boundary-layer stability measurements in a hypersonic quiet tunnel[J]. AIAA Journal, 1996, 34(12):2496-2500. DOI: 10.2514/3.13430
|
[12] |
PARZIALE N J, SHEPHERD J E, HORNUNG H G. Diffe-rential interferometric measurement of instability in a hypervelocity boundary layer[J]. AIAA Journal, 2013, 51(3):750-754.
|
[13] |
PARZIALE N J, SHEPHERD J E, HORNUNG H G. Observations of hypervelocity boundary-layer instability[J]. Journal of Fluid Mechanics, 2015, 781:87-112. DOI: 10.1017/jfm.2015.489
|
[14] |
WU J, RADESPIEL R. Investigation of instability waves in a Mach 3 laminar boundary layer[J]. AIAA Journal, 2015, 53(12):3712-3725. DOI: 10.2514/1.J054040
|
[15] |
余涛, 张威, 张毅锋, 等.一种非介入式高超声速边界层不稳定波的测量方法[J].实验流体力学, 2019, 33(5):70-75. YU T, http://www.syltlx.com/CN/abstract/abstract11212.shtml
ZHANG W, ZHANG Y F, et al. Focused laser differential interferometry measurement of instability wave in a hypersonic boundary-layer[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(5):70-75. http://www.syltlx.com/CN/abstract/abstract11212.shtml
|
[16] |
李悦雷.基于小波分析方法的高超音速尖锥边界层转捩的实验研究[D].天津: 天津大学, 2007.
LI Y L. Experimental investigations of hypersonic boundary layer transition on a sharp cone based on the method of wavelet analysis[D]. Tianjin: Tianjin University, 2007.
|
[17] |
ROEDIGER T, KNAUSS H, ESTORF M, et al. Hypersonic instability waves measured using fast-response heat-flux gauges[J]. Journal of Spacecraft and Rockets, 2009, 46(2):266-273. DOI: 10.2514/1.37026
|
[18] |
杨庆涛, 曾慧, 王辉, 等.原子层热电堆热流传感器及在气动试验中的应用[J].战术导弹技术, 2015(6):37-41, 91. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSDD201506007.htm
YANG Q T, ZENG H, WANG H, et al. Atomic layer thermopile heat flux sensor and its application in aerodynamics tests[J]. Tactical Missile Technology, 2015(6):37-41, 91. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSDD201506007.htm
|
[19] |
KEGERISE M A, RUFER S J. Unsteady heat-flux measure-ments of second-mode instability waves in a hypersonic flat-plate boundary layer[J]. Experiments in Fluids, 2016, 57(8):130. DOI: 10.1007/s00348-016-2214-9
|
[20] |
韩健.高超声速尖锥边界层流动稳定性的子波分析与互双谱分析[D].天津: 天津大学, 2010.
HAN J. Wavelet analysis and crossbispectrum analysis of flow instability for hypersonic sharp cone boundary layer[D]. Tianjing: Tianjing University, 2010.
|
[21] |
刘初平.气动热与热防护试验热流测量[M].北京:国防工业出版社, 2013.
LIU C P. Heat flux measurement inaerothermodynamic test[M]. Beijing:National Defense Industry Press, 2013.
|
[22] |
ZHANG P X, HABERMEIER H U. Atomic layer thermopile materials:physics and application[J]. Journal of Nanomaterials, 2008, 2008(S1):329601. DOI: 10.1155/2008/329601
|
[23] |
王勇, 虞澜, 陈思功, 等.原子层热电堆热(光)电探测器的原理及研究现状[J].材料导报, 2011, 25(7):33-37, 46. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201107010.htm
WANG Y, YU L, CHEN S G, et al. Principle and research statue of atomic layer thermopile thermoelectric or photoelectric detectors[J]. Materials Review, 2011, 25(7):33-37, 46. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201107010.htm
|
[24] |
ROEDIGER T, KNAUSS H, GAISBAIER U, et al. Time-resolved heat transfer measurements on the tip wall of a ribbed channel using a novel heat flux sensor——Part Ⅰ:sensor and benchmarks[J]. Journal of Turbomachinery, 2008, 130(1):011018. http://www.istic.ac.cn/suoguan/detailed.htm?dbname=xw_qk&wid=0220081100784106
|
[25] |
KNAUSS H, ROEDIGER T, BOUNTIN D A, et al. Novel sensor for fast heat flux measurements[J]. Journal of Spacecraft and Rockets, 2009, 46(2):255-265. DOI: 10.2514/1.32011?mi=8f0xx2&af=R&contents=articlesChapters&countTerms=true&field1=Contrib&target=default&text1=Boris%2C+S
|
[26] |
杨凯, 杨庆涛, 朱新新, 等.一种薄膜热电堆热流传感器灵敏度系数的实验研究[J].宇航计测技术, 2018, 38(3):67-72. https://www.cnki.com.cn/Article/CJFDTOTAL-YHJJ201803011.htm
YANG K, YANG Q T, ZHU X X, et al. Calibration tests on a new thin-film thermopile heat-flux sensor[J]. Journal of Astronautic Metrology and Measurement, 2018, 38(3):67-72. https://www.cnki.com.cn/Article/CJFDTOTAL-YHJJ201803011.htm
|
[27] |
YANG K, YANG Q T, ZHU X X, et al. A molecular dynamics simulation on the static calibration test of a revised thin-film thermopile heat-flux sensor[J]. Measurement, 2020, 150(1):107039. http://www.sciencedirect.com/science/article/pii/S0263224119309054
|
[28] |
杨凯, 朱涛, 王雄, 等.一种原子层热电堆热流传感器的封装结构: 中国, ZL20192 2230062.2[P]. 2020-05-26.
YANG K, ZHU T, WANG X, et al. The packed structure for Atomic Layer Thermopile heat-flux sensor: China, ZL20192 2230062.2[P]. 2020-05-26.
|
[29] |
WANG H, YANG Q T, ZHU X X, et al. Inverse estimation of heat flux using linear artificial neural networks[J]. International Journal of Thermal Sciences, 2018, 132:478-485. http://www.sciencedirect.com/science/article/pii/S1290072917317763
|
[1] | LI Meng, ZHAO Huiyong, YUAN Qiang, CHEN Li, MU Jinhe. Experimental research on the influence of turbulence intensity on boundary layer transition in Mach 3 supersonic flow[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(6): 56-64. DOI: 10.11729/syltlx20220087 |
[2] | LIANG Zhi, HU Fei, SHI Yu, ZHANG Zhe, LIU Lei. Research of mast shadow effect on the average wind speed and turbulence intensity by field experiment[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(2): 88-97. DOI: 10.11729/syltlx20220010 |
[3] | ZHU Bo, CHEN Jiming, WU Wei, PEI Haitao. Experimental investigation of turbulence intensity measurement in continuous transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics. DOI: 10.11729/syltlx20220034 |
[4] | YANG Junwei, YANG Hua, FU Shifeng, ZONG Wangwang, SHA Chenglong. Wind tunnel experimental study of the grille-generated turbulence in the short test section[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(6): 86-93. DOI: 10.11729/syltlx20210042 |
[5] | HU Shangyu, LI Qiusheng, ZHANG Ming. Active turbulence simulation study of wind loads on standard low-rise building[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(4): 22-29. DOI: 10.11729/syltlx20190157 |
[6] | Yu Qianqian, Wang Jinhua, Zhang Weijie, Zhang Meng, Huang Zuohua. Development of scale-controlled premixed turbulent burner and the flame structure analysis[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(2): 10-17. DOI: 10.11729/syltlx20170150 |
[7] | Ma Ziran, Xu Minyi, Luan Jian, Liu Xiaopeng, Zhao Feifei. Statistical properties of turbulent free jets issuing from rectangular nozzles with different aspect ratios[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(1): 54-61. DOI: 10.11729/syltlx20160116 |
[8] | Zhu Bo, Peng Qiang, Tang Gengsheng. Digital signal process of low turbulence intensity based on EMD[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(5): 74-79. DOI: 10.11729/syltlx20150148 |
[9] | WU Wen-fei, XIE Jing-xing, GONG Zhi-jun, LI Bao-wei. PIV measurements of the turbulence integral length scale on cold combustion flow field in burner zone of tangential firing boiler[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(2): 38-41,50. DOI: 10.3969/j.issn.1672-9897.2012.02.008 |
[10] | LIU Gang, WANG Yang, WANG Xue-yan, SHI Jia-tao, WANG Jing. PIV measurements of the ILS on in-cylinder gas turbulent flow field of gasoline engine[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(1): 59-63,67. DOI: 10.3969/j.issn.1672-9897.2007.01.012 |
1. |
郭沛洋,张毅,张梦卓,胡海豹. 亲水-超疏水相间表面通气减阻实验研究. 力学学报. 2024(01): 94-100 .
![]() | |
2. |
秦立果,刘建波,李航,卢山,马泽宇,王征,董光能. 水下湍流减阻技术研究进展. 表面技术. 2024(16): 1-18 .
![]() | |
3. |
张春来,张丽霞,王潇,吴银涛,王波. 沟槽型微纳复合结构表面的制备与减阻性能研究. 材料导报. 2023(12): 239-243 .
![]() | |
4. |
张奕,潘翀,窦建宇,张淼. 微型涡流发生器影响下的湍流边界层流场与摩阻特性. 实验流体力学. 2023(04): 48-58 .
![]() | |
5. |
李茂林,张浩,玄克勇,石若冉,张志. 壁面微沟槽减阻技术研究进展. 煤气与热力. 2023(10): 12-19 .
![]() | |
6. |
李炳炘,张浩,玄克勇,孙国梁. 微沟槽减阻技术研究现状与进展综述. 煤气与热力. 2023(12): 21-27 .
![]() | |
7. |
罗忠,刘凯,周欣,胡俊波. 水下目标壳体复合涂层阻力试验. 船舶工程. 2022(09): 147-151 .
![]() |