Citation: | Chen Xing, Shen Junmou, Bi Zhixian, Ma Handong. Review on the development of the free-piston high enthalpy impulse wind tunnel and its testing capacities[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(4): 65-80. DOI: 10.11729/syltlx20180169 |
[1] |
姜宗林, 俞鸿儒.高超声速气动热力学重要基础问题研究进展[J].气体物理, 2011, 6(4):12-17.
Jiang Z L, Yu H R. Research progresses on fundamental issues of hypersonic aerothermodynamics[J]. Physics of Gases, 2011, 6(4):12-17.
|
[2] |
Anderson J D. Hypersonic and high temperature gas dynamics[M]. Virginia:American Institute of Aeronautics and Astronautics, 2000.
|
[3] |
Lu F K, Marren D E. Advanced hypersonic test facilities[M]. Virginia:American Institute of Aeronautics and Astronautics, 2002.
|
[4] |
Igra O, Seiler F. Experimental methods of shock wave research[M]. Switzerland:Springer International Publishing, 2016.
|
[5] |
Smelt R. Review of aeronautical wind tunnel facilities[M]. Washington D C:The National Academy Press, 1988.
|
[6] |
陈强.激波管流动的理论和实验技术[M].合肥:中国科技大学, 1979.
Chen Q. The theory and experimental technology of shock tube flow[M]. Hefei:University of Science and Technology of China, 1979.
|
[7] |
Bushnell D M. Scaling:wind tunnel to flight[J]. Annual Reviews of Fluid Mechanics, 2006, 38:111-128. DOI: 10.1146/annurev.fluid.38.050304.092208
|
[8] |
Stalker R J. Hypervelocity aerodynamics with chemical nonequilibrium[J]. Annual Reviews of Fluid Mechanics, 1989, 21(1):37-60.
|
[9] |
Fomin N A. 110 years of experiments on shock tubes[J]. Journal of Engineering Physics and Thermophysics, 2010, 83(6):1118-1135. DOI: 10.1007/s10891-010-0437-9
|
[10] |
谌君谋, 陈星, 毕志献, 等.高焓激波风洞试验技术综述[J].空气动力学学报, 2018, 36(4):543-554. DOI: 10.7638/kqdlxxb-2017.0165
Shen J M, Chen X, Bi Z X, et al. Review on experimental technology of high enthalpy shock tunnel[J]. Acta Aerodyna-mica Sinica, 2018, 36(4):543-554. DOI: 10.7638/kqdlxxb-2017.0165
|
[11] |
Gai S L. Free piston shock tunnels:developments and capabilities[J]. Progress in Aerospace Sciences, 1992, 29(1):1-41. https://www.sciencedirect.com/science/article/pii/037604219290002Y
|
[12] |
Jiang Z L, Zhao W, Yu H R. Study on high performance International techniques for high-enthalpy shock tunnels[C]//Proc of the 23rd International Symposium on Shock Waves. 2001.
|
[13] |
Stollery J L, Stalker R J. The development and use of free piston wind tunnels[C]//Proc of the 14th International Sympo-sium on Shock Tubes and Waves. 1983.
|
[14] |
Stalker R J, Besant R W. A method for production of strong shocks in a gas driven shock tube[R]. National Research Council Report GD-81, 1959.
|
[15] |
Stalker R J, Morgan R G. The university of Queensland free piston shock tunnel T-4: Initial operation and preliminary calibration[C]//Proc of the 4th National Space Engineering Symposium. 1988.
|
[16] |
Morgan R G. A review of the use of expansion tubes for creating superorbital flows[R]. AIAA-97-0279, 1997.
|
[17] |
Hornung H. Experimental hypervelocity flow simulation, needs, achievements and limitations[C]//Proc of the 1st Pacific International Conference on Aerospace Science and Technology. 1993.
|
[18] |
McGilvray M, Doherty L J, Morgan R G, et al. T6: the oxford university stalker tunnel[R]. AIAA-2015-3545, 2015.
|
[19] |
Burstchell Y, Brun R, Zeitoun D. Two dimensional numerical simulation of the Marseille University free piston shock tunnel-TCM2[C]//Proc of the 18th International Symposium on Shock Waves. 1991.
|
[20] |
Hannemann K. High enthalpy flows in the HEG shock tunnel: experiment and numerical rebuilding[R]. AIAA-2003-978, 2003.
|
[21] |
Itoh K, Takahashi M, Komuro T. Effect of throat melting on nozzle flow characteristic in high enthalpy shock tunnel[C]//Proc of the 22nd International Symposium on Shock Waves. 1999.
|
[22] |
Shen J M, Ma H D, Li C. Initial Measurements of a 2m Mach-10 free-piston shock tunnel at CAAA[C]//Proc of the 31st International Symposium on shock Waves. 2017.
|
[23] |
Bi Z X, Zhang B B, Zhu H, et al. Experiments and computations on the compression process in the free piston shock tunnel FD21[C]//Proc of the 5th International Conference on Experimental Fluid Mechanics. 2018.
|
[24] |
Hertzberg A. A shock tube method of generating hypersonic flows[J]. Journal of the Aeronautical Science, 1951, 18(12):803-804. DOI: 10.2514/8.2124
|
[25] |
Stollery J L. Real gas effects on shock-tube performance at high shock strengths[R]. ARC TR CP-403, 1958.
|
[26] |
Glick H S, Wurster W H. Shock tube study of dissociation relaxation in oxygen[J]. The Journal of Chemical Physics, 1957, 27(5):1224-1226. DOI: 10.1063/1.1743976
|
[27] |
Alpher R A, White D R. Flow in shock tubes with area change at the diaphragm section[J]. Journal of Fluid Mechanics, 1958, 3(5):457-470. DOI: 10.1017/S0022112058000124
|
[28] |
Longwell P A, Reamer H H, Wilburn N P, et al. Ballistic piston for investigating gas phase reactions[J]. Industrial and Engineering Chemistry, 1958, 50(4):603-610. DOI: 10.1021/ie50580a027
|
[29] |
Stalker R J. Recent developments with free piston drivers[C]//Proc of the 17th International Symposium on Shock Tubes and Waves. 1989.
|
[30] |
Greif R. The free piston shock tube[D]. Cambridge: Harvard University, 1962.
|
[31] |
Resler E L, Bloxsom D E. Very high number flows by unsteady flow principles[C]//Proc of Cornell University Graduate school of Aeronautical Engineering. 1952.
|
[32] |
Bernstein H. A double-diaphragm shock tube to produce transient high Mach number flows[J]. Journal of the Aeronautical Science, 1953, 20(11):790-791. DOI: 10.2514/8.2844
|
[33] |
Hertzberg A, Smith W E, Glick H S, et al. Modifications of the shock tube for the generation of hypersonic flow[R]. AEDC TN-55-15, 1955.
|
[34] |
Trimpi R L. A preliminary theoretical study of the expansion tube, a new device for producing high enthalpy short duration hypersonic gas flows[R]. NASA TR R-133, 1962.
|
[35] |
Trimpi R L, Callis L B. A perfect-gas analysis of the expansion tunnel, a modification to the expansion tube[R]. NASA TR R-233, 1965.
|
[36] |
Callis L B. A theoretical study of the effect on expansion tube performance of earo changes at primary and secondary diaphragm station[R]. NASA TN D-3303, 1966.
|
[37] |
Norfleet G D, Lacey J J, Whitfield J D. Results of an experimental investigation of the performance of an expansion tube[C]//Proc of the 4th Hypervelocity Techniques Sympo-sium. 1965.
|
[38] |
Norfleet G D, Loper F C. A theoretical real-gas analysis of the expansion tunnel[R]. Arnold Engineering Development Center TR-66-71, 1966.
|
[39] |
Morgan R G, Stalker R J. Double diaphragm driven free piston expansion tube[C]//Proc of the 18th International Symposium on Shock Tubes and Waves. 1991.
|
[40] |
Wittliff C E, Wilson M R, Hertzberg A. The tailored interface hypersonic shock tunnel[J]. Journal of the Aerospace Sciences, 1958, 26(1):219-228.
|
[41] |
Trass O, Mackey D. Contact surface tailoring in a chemical shock tube[J]. AIAA Journal, 1963, 1(9):2161-2163. DOI: 10.2514/3.2019
|
[42] |
Flagg R F. Detailed analysis of shock tube tailored condition[R]. RAD-TM-63-64, 1963.
|
[43] |
Reddy N M. Shock tube flow analysis with a dimensionless velocity number[R]. NASA-TN-D-5518, 1969.
|
[44] |
Hansen C F. Approximations for the thermodynamic and transport properties of high temperature air[R]. NASA-TR-R-50, 1959.
|
[45] |
Loubsky W J, Reller J O Jr. Analysis of tailored-interface operation of shock tubes with helium-driven planetary gases[R]. NASA-TN-D-3495, 1966.
|
[46] |
Mirels H. Shock tube test time limitation due to turbulent wall boundary layer[J]. AIAA Journal, 1964, 2(1):84-93. DOI: 10.2514/3.2218
|
[47] |
Stalker C, Morgan R, Tanner R T. Raymond Johnstalker 1930-2014[J]. Historical Records of Australian Science, 2016, 27(1):70-80. DOI: 10.1071/HR15012
|
[48] |
Stalker R J. The free-piston shock tube[J]. Aeronautical Quarterly, 1966, 17(4):351-370. DOI: 10.1017/S0001925900003966
|
[49] |
McIntosh M K. Free stream velocity measurements in a high enthalpy shock tunnel[J]. Physics of Fluids, 1971, 14(6):1100-1102. DOI: 10.1063/1.1693570
|
[50] |
Crane K C, Stalker R J. Mass-spectrometric analysis of hypersonic flows[J]. Journal of Physics D:Applied Physics, 1977, 10(5):679-695. DOI: 10.1088/0022-3727/10/5/010
|
[51] |
Hornung H G. Non-equilibrium ideal-gas dissociation after a curved shock wave[J]. Journal of Fluid Mechanics, 1976, 74(1):143-159. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=S0022112076001730
|
[52] |
Hornung H G, Smith G H. The influence of relaxation on shock detachment[J]. Journal of Fluid Mechanics, 1979, 93(2):225-239. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=S0022112079001865
|
[53] |
East R A, Stalker R J. Measurements of heat transfer to a flat plate in a dissociated high-enthalpy laminar air flow[J]. Journal of Fluid Mechanics, 1980, 97(4):673-699. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=S0022112080002753
|
[54] |
Ebrahim N A, Sandeman R J. Interferometric studies of carbon dioxide dissociation in free-piston shock tube[J]. Journal of Chemical Physics, 1976, 65(1):3446-3453.
|
[55] |
Smart M, Stalker R J, Morgan R, et al. Hypersonic research in Australia[R]. RTO-EN-AVT-150-11, 2008.
|
[56] |
Jones J J. Some performance characteristics of the LRC 3.75-inch pilot expansion tube using an unheated hydrogen driver[C]//Proc of the 4th Hypervelocity Techniques Symposium. 1965.
|
[57] |
Moore J A. Description and initial operating performance of the Langley 6 inch expansion tube using heated Helium driver gas[R]. NASA-TM-X-3240, 1975.
|
[58] |
Miller C G. Flow properties in expansion tube with Helium, Argon, Air and CO2[J]. AIAA Journal, 1974, 12(4):564-566. DOI: 10.2514/3.49290
|
[59] |
Miller C G, Jones J J. Development and performance of the NASA Langley Research Center expansion tube/tunnel, a hypersonic-hypervelocity real gas facility[C]//Proc of the 14th International Symposium on Shock Tubes and Waves. 1983.
|
[60] |
Stewart B, Morgan R G, Jacobs P, et al. The RHYFL facility as a high performance expansion tube for scramjet testing[R]. AIAA-2000-2595, 2000.
|
[61] |
Blanks J R. Initial calibration of the AEDC impulse tunnel[R]. AEDC-TR-95-36, 1996.
|
[62] |
苟光贤, 黄洁.高焓真实气体效应试验技术研究[C]//第九届高超声速气动力(热)学术交流会议论文集. 1997.
|
[63] |
苟光贤.气动中心超高速所自由活塞激波风洞技术研究进展[C]//第二届全国航空航天空气动力学前沿问题学术研讨会, 1996.
Gou G X. The progress of the free piston shock tunnel at the CARDC hypervelocity research institute[C]//Proc of the 2nd National Symposium on the Frontiers of Aerospace Aerodyna-mics. 1996.
|
[64] |
Schemperg K, Mundt C. Study of numerical simulations for optimized operation of the free piston shock tunnel HELM[R]. AIAA-2008-2653, 2008.
|
[65] |
McGilvray M, Doherty L J, Morgan R G, et al. T6: The Oxford University stalker tunnel[R]. AIAA-2015-3545, 2015.
|
[66] |
Oxford Thermofluids Institute. T6 Stalker Tunnel[EB/OL].[2019-04-09]. http://Oti.eng.ox.ac.uk/facilities/t6-stalker-tunnel.
|
[67] |
Stennett S J, Gildfind D E, Jacobs P A. Optimising the X3R reflected shock tunnel free-piston driver for long duration test times[C]//Proc of the 31st International Symposium on Shock Waves. 2017.
|
[68] |
Morgan R G, Stalker R J. Double diaphragm driven free piston expansion tube[C]//Proc of the 18th International Symposium on Shock Waves. 1991.
|
[69] |
Erdos J, Calleja J, Tamagno J. Increase in the hypervelocity test envelope of the HYPULSE shock-expansion tube[R]. AIAA-94-2524, 1994.
|
[70] |
Morgan R G. Superorbital expansion tubes[C]//Proc of the 21st International Symposium on Shock Waves. 1997.
|
[71] |
Abdel-Jawad M, Mee D J, Morgan R G, et al. Transient force measurements at superorbital speeds[C]//Proc of the 23rd International Symposium on Shock Waves. 2001.
|
[72] |
Sasoh A, Ohnishi Y, Koremoto K. Operation design and performance of a free-piston-driven expansion tube[R]. AIAA-99-0825, 1999.
|
[73] |
Tannoy H, Komuro T, Sato K, et al. Basic characteristics of the free-piston driven expansion tube JAXA HEK-1[R]. AIAA-2016-3817, 2016.
|
[74] |
Leyva I A. Study of the addition of a divergent nozzle to an expansion tube for increasing test time[R]. AIAA-1994-2533, 1994.
|
[75] |
Bakos R J, Calleja J F, Erdos J I, et al. Design, calibration and analysis of a tunnel mode of operation for the HYPULSE facility[R]. AIAA-1996-2194, 1996.
|
[76] |
Sudnitsin O. Design and testing of expansion tube with area change[D]. Queensland: the University of Queensland, 2000.
|
[77] |
Chue R S M, Bakos R J, Tsai C Y, et al. The design of an expansion tunnel nozzle in HYPULSE[C]//Proc of the 23rd International Symposium on Shock Waves. 2001.
|
[78] |
Holden M S, Wadhams T P, Candler G V. Experimental studies in the LENS shock tunnel and expansion tunnel to examine real-gas effects in hypervelocity flows[R]. AIAA-2004-916, 2004.
|
[79] |
MecLean M, Dufrene A, Wadhams T, et al. Numerical and experimental characterization of high enthalpy flow in an expansion tunnel flow[R]. AIAA-2010-1562, 2010.
|
[80] |
Hornung H G. The piston motion in a free-piston driver for shock tubes and tunnels[R]. GALCIT FM-88-1, 1988.
|
[81] |
Beck W H, Eiteberg G, Mclntyre T J, et al. The high enthalpy shock tunnel in Göttingen (HEG)[J]. Shock Waves, 1992, 2(1):677-682.
|
[82] |
Labracherie L, Dumitrescu M P, Burtschell Y, et al. On the compression process in a free-piston shock-tunnel[J]. Shock Waves, 1993, 3(1):19-23. DOI: 10.1007/BF01414744
|
[83] |
徐立功, 王刚.重活塞压缩器性能参数的数值解法[J].中国科学技术大学学报, 1994, 24(3):277-283. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400622405
Xu L G, Wang G. Numerical method of calculation performance parameters of a heavy piston compressor[J]. Journal of China University of Science and Technology, 1994, 24(3):277-283. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400622405
|
[84] |
Itoh K, Ueda S, Komuro T, et al. Improvement of a free piston driver for a high-enthalpy shock tunnel[J]. Shock Waves, 1998, 8(4):215-233. DOI: 10.1007/s001930050115
|
[85] |
朱浩, 沈清, 宫建.自由活塞激波风洞定压驱动时间研究[J].空气动力学学报, 2014, 32(1):45-50. http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb201401007
Zhu H, Shen Q, Gong J. The constant pressure time of piston driver in free piston shock tunnel[J]. Acta Aerodynamica Sinica, 2014, 32(1):45-50. http://d.old.wanfangdata.com.cn/Periodical/kqdlxxb201401007
|
[86] |
Andrianatoa A, Gildfind D, Morgan R. Preliminary develop-ment of high enthalpy conditions for the X3 expansion tube[C]//Proc of the 20th Australasian Fluid Mechanics Conference. 2016.
|
[87] |
Andrianatos A, Gildfind D, Morgan R G. Driver condition development for high-enthalpy operation of the X3 expansion tube[C]//Proc of the 31st International Symposium on Shock Waves. 2017.
|
[88] |
Mark H. The interaction of a reflected shock wave with the boundary layer in a shock tube[R]. NACA-TM-1418, 1958.
|
[89] |
Sudani N, Valiferdowsi B, Hornung H G. Test time increase by delaying driver gas contamination for reflected shock tunnels[J]. AIAA Journal, 2000, 38(9):1497-1503. DOI: 10.2514/2.1138
|
[90] |
Hannemann K, Schnieder M, Reimann B, et al. The influence and the delay of driver gas contamination in HEG[R]. AIAA-2000-2593, 2000.
|
[91] |
Hannemann K, Schramm J M. A closely coupled experimental and numerical approach for hypersonic and high enthalpy flow investigations utilizing the HEGshock tunnel and the DLR TAU code-part 2[R]. RTO-EN-AVT-186, 2010.
|
[92] |
Tsai C Y, Bakos R J. Mach 7-21 flight simulation in the HYPLUSE shock tunnel[C]//Proc of the 23rd International Symposium on Shock Waves. 2002.
|
[93] |
Doherty L J. An experimental investigation of an airframe integrated 3-D scramjet engine at a Mach 10 flight condition[D]. Queensland: The University of Queensland, 2014.
|
[94] |
Nagayama T, Nagai H, Tanno H, et al. Global heat flux measurement using temperature-sensitive paint in high-enthalpy shock tunnel HIEST[R]. AIAA-2017-1682, 2017.
|
[95] |
Han S G, Jia G S, Bi Z X, et al. Heat-flux measurement of flat delta olate using phosphor thermography technique in Gun tunnel[C]//Proc of the 31st International Symposium on Shock Waves. 2017.
|
[96] |
于靖波, 向星居, 熊红亮, 等.快速响应压敏涂料测试技术与应用[J].实验流体力学, 2018, 32(3):17-32. http://www.syltlx.com/CN/abstract/abstract11102.shtml
YU J B, Xiang X J, Xiong H L, et al. Measurements and applications of fast response pressure sensitive paint[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(3):17-32. http://www.syltlx.com/CN/abstract/abstract11102.shtml
|
[97] |
Tanno H, Komuro T, Ohnishi N, et al. Experimental study on heat flux augmentation in high enthalpy shock tunnels[R]. AIAA-2014-2548, 2014.
|
[98] |
Takahashi M, KomuroK, Itoh K H T, et al. Development of a new force measurement method for scramjet testing in a high enthalpy shock tunnel[R]. AIAA-1999-4961, 1999.
|
[99] |
Roberson M, Hannemann K. Shortduration force measurement in impulse facilities[R]. AIAA-2006-3439, 2006.
|
[100] |
Gardner A D, Hannemann K. Ground testing of the HyShot supersonic combustion flight experiment in HEG and compari-son with flight data[R]. AIAA-2004-3345, 2004.
|
[101] |
Itoh K. Aerothermodynamic and scramjet tests in high enthalpy shock tunnel[R]. AIAA-2007-1041, 2007.
|
[102] |
Schramm J, Sunami T, Itoh K. Experimental investigation of supersonic combustion in the HIEST and HEG free piston driven shock tunnels[R]. AIAA-2010-7122, 2010.
|
[103] |
中国科技网. "一秒跑三千米"我国10000公里/时超燃冲压发动机风洞试验获突破(2018-12-10)[2019-04-09]. http://www.stdaily.com/index/kejixinwen/2018-12/10/content_737584.shtml.
|
[104] |
Tanno H, Komuro T, Sato K, et al. Measurement of hypersonic high-enthalpy boundary layer transition on a 7° cone model[R]. AIAA-2010-310, 2010.
|
[105] |
Tanno H, Komuro T, Sato K, et al. Free-flight force measure-ment technique in shock tunnel[R]. AIAA-2012-1241, 2012.
|
[106] |
Stallings D W, Williams W D. Free-piston shock tunnel test technique development: an AEDC/DLR cooperative program[R]. AEDC-TR-01-5, 2003.
|
[107] |
Buttsworth D, D'Souza M, Potter D. Expansion tunnel radiation experiments to support Hayabusa re-entry observa-tions[R]. AIAA-2010-634, 2010.
|
[108] |
Andrianatos A, Gildfind D, Morgan R. A study of radiation scaling of high enthalpy flows in expansion tubes[C]//Proc of the 7th Asia-Pacific International Symposium on Aerospace Technology. 2015.
|
[109] |
Kychakoff G, Howe R D, Hanson R K, et al. Flow visualiza-tion in combustion gases using planar laser-induced fluorescence[R]. AIAA-1983-405, 1983.
|
[110] |
Sappey A D, Sutherland L, Owenby D, et al. Flight-ready TDLAS combustion sensor for the HIFiRE 2 hypersonic research program[R]. AEDC-TR-10-T-6, 2009.
|
[111] |
Grisch F, Bounchardy P, Péalat M. CARS studies in hypersonic flows[R]. AIAA-93-3047, 1993.
|
[112] |
Ben-Yakar A, Hanson R K. Hypervelocity combustion studies using simulaneous OH-PLIF and schlieren imaging in an expansion tube[R]. AIAA-1999-2453, 1999.
|
[113] |
Krishna Y, Sheele S L, O'Byrne S B. A time-resolved tempera-ture measurement system for free-piston shock tunnels[R]. AIAA-2015-2249, 2015.
|
[114] |
Boyce R R, Pulford D R N, Housing A F P. Rotational and vibrational temperature measurements using CARS in a hypervelocity shock layer flow and comparisons with CFD calculations[J]. Shock Waves, 1996, 6:41-51. DOI: 10.1007/BF02511403
|
[1] | LI Meng, ZHAO Huiyong, YUAN Qiang, CHEN Li, MU Jinhe. Experimental research on the influence of turbulence intensity on boundary layer transition in Mach 3 supersonic flow[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(6): 56-64. DOI: 10.11729/syltlx20220087 |
[2] | LIANG Zhi, HU Fei, SHI Yu, ZHANG Zhe, LIU Lei. Research of mast shadow effect on the average wind speed and turbulence intensity by field experiment[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(2): 88-97. DOI: 10.11729/syltlx20220010 |
[3] | ZHU Bo, CHEN Jiming, WU Wei, PEI Haitao. Experimental investigation of turbulence intensity measurement in continuous transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics. DOI: 10.11729/syltlx20220034 |
[4] | YANG Junwei, YANG Hua, FU Shifeng, ZONG Wangwang, SHA Chenglong. Wind tunnel experimental study of the grille-generated turbulence in the short test section[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(6): 86-93. DOI: 10.11729/syltlx20210042 |
[5] | HU Shangyu, LI Qiusheng, ZHANG Ming. Active turbulence simulation study of wind loads on standard low-rise building[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(4): 22-29. DOI: 10.11729/syltlx20190157 |
[6] | Yu Qianqian, Wang Jinhua, Zhang Weijie, Zhang Meng, Huang Zuohua. Development of scale-controlled premixed turbulent burner and the flame structure analysis[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(2): 10-17. DOI: 10.11729/syltlx20170150 |
[7] | Ma Ziran, Xu Minyi, Luan Jian, Liu Xiaopeng, Zhao Feifei. Statistical properties of turbulent free jets issuing from rectangular nozzles with different aspect ratios[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(1): 54-61. DOI: 10.11729/syltlx20160116 |
[8] | Zhu Bo, Peng Qiang, Tang Gengsheng. Digital signal process of low turbulence intensity based on EMD[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(5): 74-79. DOI: 10.11729/syltlx20150148 |
[9] | WU Wen-fei, XIE Jing-xing, GONG Zhi-jun, LI Bao-wei. PIV measurements of the turbulence integral length scale on cold combustion flow field in burner zone of tangential firing boiler[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(2): 38-41,50. DOI: 10.3969/j.issn.1672-9897.2012.02.008 |
[10] | LIU Gang, WANG Yang, WANG Xue-yan, SHI Jia-tao, WANG Jing. PIV measurements of the ILS on in-cylinder gas turbulent flow field of gasoline engine[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(1): 59-63,67. DOI: 10.3969/j.issn.1672-9897.2007.01.012 |
1. |
郭沛洋,张毅,张梦卓,胡海豹. 亲水-超疏水相间表面通气减阻实验研究. 力学学报. 2024(01): 94-100 .
![]() | |
2. |
秦立果,刘建波,李航,卢山,马泽宇,王征,董光能. 水下湍流减阻技术研究进展. 表面技术. 2024(16): 1-18 .
![]() | |
3. |
张春来,张丽霞,王潇,吴银涛,王波. 沟槽型微纳复合结构表面的制备与减阻性能研究. 材料导报. 2023(12): 239-243 .
![]() | |
4. |
张奕,潘翀,窦建宇,张淼. 微型涡流发生器影响下的湍流边界层流场与摩阻特性. 实验流体力学. 2023(04): 48-58 .
![]() | |
5. |
李茂林,张浩,玄克勇,石若冉,张志. 壁面微沟槽减阻技术研究进展. 煤气与热力. 2023(10): 12-19 .
![]() | |
6. |
李炳炘,张浩,玄克勇,孙国梁. 微沟槽减阻技术研究现状与进展综述. 煤气与热力. 2023(12): 21-27 .
![]() | |
7. |
罗忠,刘凯,周欣,胡俊波. 水下目标壳体复合涂层阻力试验. 船舶工程. 2022(09): 147-151 .
![]() |