Wang Gaofeng, Xia Yifan, Ye Chenran, Hu Keqi, Linghu Changhong. Progress on light-round ignition dynamics in annular combustor[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(1): 14-28. DOI: 10.11729/syltlx20180090
Citation: Wang Gaofeng, Xia Yifan, Ye Chenran, Hu Keqi, Linghu Changhong. Progress on light-round ignition dynamics in annular combustor[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(1): 14-28. DOI: 10.11729/syltlx20180090

Progress on light-round ignition dynamics in annular combustor

More Information
  • Received Date: June 04, 2018
  • Revised Date: September 25, 2018
  • Annular combustors are generally applied in aero-engines. Study on light-round ignition dynamics of annular combustors is important for ignition reliability. Laboratory-scale mo-dels have become a feasible way to investigate the ignition mechanism of annular combustors due to its low economic cost and high precision. Several typical laboratory-scale annular combustors and related experiments are reviewed, including the annular combustor MICCA from EM2C in France, the premixed or non-premixed annular combustor made by Cambridge University, the annular combustor model referred from an industrial gas turbine in Technical University Munich, and the annular combustor TurboCombo with the coupling of the combustor and the turbine interaction made by Zhejiang University. The ignition process can be generally divided into three phases:(1) the formation of a flame kernel in a flammable mixture around the igniter; (2) the kernel expands and grows to be a swirling flame, which is stabilized and anchored upon the adjacent burner; (3) the propagation of the flame (light-round), which successively igniting all the burners and then reaching to steady state. The factors influencing the light-round process are quite complicated. Previous experimental and numerical investigations focus on the equivalence ratio, ignition mode, thermal power, bulk velocity, spacing between burners and so on, which influence the characteristics of the ignition, flameout, flame propagation mode and light-round time in the annular combustor. Recently, the spray combustion is also studied in the similar models. Meanwhile, the application of advanced laser diagnostics with high resolution would promote the understanding of the light-round mechanism.
  • [1]
    Weigand P, Meier W, Duan X R, et al. Investigations of swirl flames in a gas turbine model combustor[J]. Combustion and Flame, 2006, 144(1-2):205-224. DOI: 10.1016/j.combustflame.2005.07.010
    [2]
    Palies P, Durox D, Schuller T, et al. Dynamics of premixed confined swirling flames[J]. Comptes Rendus Mécanique, 2009, 337(6-7):395-405. DOI: 10.1016/j.crme.2009.06.001
    [3]
    Boxx I, Arndt C M, Carter C D, et al. High-speed laser diagnostics for the study of flame dynamics in a lean premixed gas turbine model combustor[J]. Experiments in Fluids, 2010, 52(3):555-567. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1936ba0f4eea8e498f2dcd45e6ee685b
    [4]
    Meier W, Boxx I, Stöhr M, et al. Laser-based investigations in gas turbine model combustors[J]. Experiments in Fluids, 2010, 49(4):865-882. DOI: 10.1007/s00348-010-0889-x
    [5]
    Palies P, Durox D, Schuller T, et al. The combined dynamics of swirler and turbulent premixed swirling flames[J]. Combustion and Flame, 2010, 157(9):1698-1717. DOI: 10.1016/j.combustflame.2010.02.011
    [6]
    Palies P, Durox D, Schuller T, et al. Nonlinear combustion instability analysis based on the flame describing function applied to turbulent premixed swirling flames[J]. Combustion and Flame, 2011, 158(10):1980-1991. DOI: 10.1016/j.combustflame.2011.02.012
    [7]
    Boxx I, Carter C D, Stöhr M, et al. Study of the mechanisms for flame stabilization in gas turbine model combustors using kHz laser diagnostics[J]. Experiments in Fluids, 2013, 54(5):1532. DOI: 10.1007/s00348-013-1532-4
    [8]
    Lacoste D A, Moeck J P, Durox D, et al. Effect of nanosecond repetitively pulsed discharges on the dynamics of a swirl-stabilized lean premixed flame[J]. Journal of Engineering for Gas Turbines and Power, 2013, 135(10):101501. DOI: 10.1115/1.4024961
    [9]
    Kobayashi M, Ogata H, Oda T, et al. Improvement on ignition performance for a lean staged low NOx combustor[R]. ASME GT2011-46187, 2011. https://www.researchgate.net/publication/267502943_Improvement_on_Ignition_Performance_for_a_Lean_Staged_Low_NOx_Combustor
    [10]
    Cordier M, Vandel A, Renou B, et al. Experimental and numerical analysis of an ignition sequence in a multiple-injectors burner[R]. ASME GT2013-94681, 2013.
    [11]
    Barré D, Esclapez L, Cordier M, et al. Flame propagation in aeronautical swirled multi-burners:experimental and numerical investigation[J]. Combustion and Flame, 2014, 161(9):2387-2405. DOI: 10.1016/j.combustflame.2014.02.006
    [12]
    Machover E, Mastorakos E. Experimental and numerical investigation on spark ignition of linearly arranged non-premixed swirling burners[J]. Combustion Science and Technology, 2017, 189(8):1326-1353. DOI: 10.1080/00102202.2017.1294589
    [13]
    Bourgouin J F, Durox D, Schuller T, et al. Ignition dynamics of an annular combustor equipped with multiple swirling injectors[J]. Combustion and Flame, 2013, 160(8):1398-1413. DOI: 10.1016/j.combustflame.2013.02.014
    [14]
    Philip M, Boileau M, Vicquelin R, et al. Ignition sequence of an annular multi-injector combustor[J]. Physics of Fluids, 2014, 26(9):091106. DOI: 10.1063/1.4893452
    [15]
    Philip M, Boileau M, Vicquelin R, et al. Simulation of the ignition process in an annular multiple-injector combustor and comparison with experiments[J]. Journal of Engineering for Gas Turbines and Power, 2014, 137(3):031501. DOI: 10.1115/1.4028265
    [16]
    Philip M, Boileau M, Vicquelin R, et al. Large eddy simulations of the ignition sequence of an annular multiple-injector combustor[J]. Proceedings of the Combustion Institute, 2015, 35(3):3159-3166. DOI: 10.1016/j.proci.2014.07.008
    [17]
    Prieur K, Durox D, Beaunier J, et al. Ignition dynamics in an annular combustor for liquid spray and premixed gaseous injection[J]. Proceedings of the Combustion Institute, 2017, 36(3):3717-3724. DOI: 10.1016/j.proci.2016.08.008
    [18]
    Bach E, Kariuki J, Dawson J R, et al. Spark ignition of single bluff-body premixed flames and annular combustors[R]. AIAA-2013-1182, 2013. https://www.researchgate.net/publication/268469348_Spark_ignition_of_single_bluff-body_premixed_flames_and_annular_combustors
    [19]
    Machover E, Mastorakos E. Spark ignition of annular non-premixed combustors[J]. Experimental Thermal and Fluid Science, 2016, 73:64-70. DOI: 10.1016/j.expthermflusci.2015.09.008
    [20]
    Machover E, Mastorakos E. Experimental investigation on spark ignition of annular premixed combustors[J]. Combustion and Flame, 2017, 178:148-157. DOI: 10.1016/j.combustflame.2017.01.013
    [21]
    Pankiewitz C, Sattelmayer T. Time domain simulation of combustion instabilities in annular combustors[R]. ASME GT2002-30063, 2002. https://www.researchgate.net/publication/245353100_Time_Domain_Simulation_of_Combustion_Instabilities_in_Annular_Combustors
    [22]
    Kunze K, Hirsch C, Sattelmayer T. Transfer function mea-surements on a swirl stabilized premix burner in an annular combustion chamber[R]. ASME GT2004-53106, 2004.
    [23]
    Fanaca D, Alemela P R, Ettner F, et al. Determination and comparison of the dynamic characteristics of a perfectly premixed flame in both single and annular combustion chambers[R]. ASME GT2008-50781, 2008.
    [24]
    Ye C R, Wang G F, Fang Y Q, et al. Ignition dynamics in an annular combustor with gyratory flow motion[R]. ASME GT2018-76624, 2018.
    [25]
    Zhao D M, Lin Q Z, Xia Y F, et al. Simulations of the ignition dynamics in an annular multiple-injector combustor[C]//Proceedings of the CSSCI Spring technical meeting. 2018.
    [26]
    令狐昌鸿, 王高峰, 钟亮, 等.环形旋流燃烧室模型点火过程的实验[J].航空动力学报, 2018, 33(7):1767-1778. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201807026

    Linghu C H, Wang G F, Zhong L, et al. Experiment on ignition process in annular swirling combustor model[J]. Journal of Aerospace Power, 2018, 33(7):1767-1778. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201807026
    [27]
    叶沉然, 王高峰, 方元祺, 等.涡轮导叶对环形燃烧室点火影响的实验研究[C]//2018年中国工程热物理学会燃烧学学术年会论文集. 2018.

    Ye C R, Wang G F, Fang Y Q, et al. Experimental investigations of ignition dynamics in an annular combustor with turbine guide vanes[C]//Proc of China National Symposium on Combustion. 2018.
    [28]
    叶沉然, 王高峰, 马承飚, 等.斜喷环流环形燃烧室点火实验研究[J].工程热物理学报, 2018, 39(11):2549-2558. http://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201811032.htm

    Ye C R, Wang G F, Ma C B, et al. Experimental investigations of ignition process in an annular combustor with circumferential flow via oblique injection[J]. Journal of Engineering Thermophysics, 2018, 39(11):2549-2558. http://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201811032.htm
    [29]
    Triantafyllidis A, Mastorakos E, Eggels R L G M. Large eddy simulations of forced ignition of a non-premixed bluff-body methane flame with conditional moment closure[J]. Combustion and Flame, 2009, 156(12):2328-2345. DOI: 10.1016/j.combustflame.2009.05.005
    [30]
    Subramanian V, Domingo P, Vervisch L. Large eddy simulation of forced ignition of an annular bluff-body burner[J]. Combustion and Flame, 2010, 157(3):579-601. DOI: 10.1016/j.combustflame.2009.09.014
    [31]
    Jones W P, Prasad V N. LES-pdf simulation of a spark ignited turbulent methane jet[J]. Proceedings of the Combustion Institute, 2011, 33(1):1355-1363. DOI: 10.1016/j.proci.2010.06.076
    [32]
    Gicquel L Y M, Staffelbach G, Poinsot T. Large eddy simulations of gaseous flames in gas turbine combustion chambers[J]. Progress in Energy and Combustion Science, 2012, 38(6):782-817. DOI: 10.1016/j.pecs.2012.04.004
    [33]
    Jones W P, Marquis A J, Prasad V N. LES of a turbulent premixed swirl burner using the Eulerian stochastic field method[J]. Combustion and Flame, 2012, 159(10):3079-3095. DOI: 10.1016/j.combustflame.2012.04.008
    [34]
    Bulat G, Jones W P, Marquis A J. Large eddy simulation of an industrial gas-turbine combustion chamber using the sub-grid PDF method[J]. Proceedings of the Combustion Institute, 2013, 34(2):3155-3164. DOI: 10.1016/j.proci.2012.07.031
    [35]
    Boileau M, Staffelbach G, Cuenot B, et al. LES of an ignition sequence in a gas turbine engine[J]. Combustion and Flame, 2008, 154(1-2):2-22. DOI: 10.1016/j.combustflame.2008.02.006
    [36]
    Esclapez L, Riber E, Cuenot B. Ignition probability of a partially premixed burner using LES[J]. Proceedings of the Combustion Institute, 2015, 35(3):3133-3141. http://cn.bing.com/academic/profile?id=2fc7361011e41b65d1a7ef2de846ea39&encoded=0&v=paper_preview&mkt=zh-cn
    [37]
    Neophytou A, Richardson E S, Mastorakos E. Spark ignition of turbulent recirculating non-premixed gas and spray flames:a model for predicting ignition probability[J]. Combustion and Flame, 2012, 159(4):1503-1522. DOI: 10.1016/j.combustflame.2011.12.015
    [38]
    Fiorina B, Vicquelin R, Auzillon P, et al. A filtered tabulated chemistry model for LES of premixed combustion[J]. Combustion and Flame, 2010, 157(3):465-475. DOI: 10.1016/j.combustflame.2009.09.015
    [39]
    Auzillon P, Gicquel O, Darabiha N, et al. A filtered tabulated chemistry model for LES of stratified flames[J]. Combustion and Flame, 2012, 159(8):2704-2717. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ed6fd843a298cf43e57926e1ca87391d
    [40]
    Colin O, Ducros F, Veynante D, et al. A thickened flame model for large eddy simulations of turbulent premixed combustion[J]. Physics of Fluids, 2000, 12(7):1843-1863. DOI: 10.1063/1.870436
    [41]
    Worth N A, Dawson J R. Modal dynamics of self-excited azimuthal instabilities in an annular combustion chamber[J]. Combustion and Flame, 2013, 160(11):2476-2489 DOI: 10.1016/j.combustflame.2013.04.031
  • Related Articles

    [1]ZHONG Fuyu, LE Jialing, TIAN Ye, YUE Maoxiong. Investigation of the combustion process in an ethylene-fueled scramjet combustor[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(1): 34-43. DOI: 10.11729/syltlx20200093
    [2]QI Sheng, LIU Siyu, XIN Shirong, HE Yong, LIU Yingzu, WANG Zhihua. Experimental study on ignition and combustion of pulverized coal particles clouds under laminar and turbulent conditions[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(3): 61-69. DOI: 10.11729/syltlx20200033
    [3]Liu Erwei, Xu Shengli. Flow field visualization for ethylene/air auto-ignition at different pressures and temperatures in a rectangular shock tube[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(1): 62-71. DOI: 10.11729/syltlx20180051
    [4]Liu Bing, He Guoqiang, Qin Fei. Experimental study on ignition process for ethylene high speed jet[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(2): 24-27. DOI: 10.11729/syltlx20180003
    [5]Zhang Wanzhou, Le Jialing, Yang Shunhua, Cheng Wenming, Deng Weixin. Experimental research on ethylene ignition and flame propagation processes for scramj et at Ma4[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(3): 40-46,84. DOI: 10.11729/syltlx20150161
    [6]Li Minglei, Wu Ning, Hou Lingyun, Ren Zhuyin. Research progress on ignition and flame propagation in highly turbulent flows[J]. Journal of Experiments in Fluid Mechanics, 2015, (4): 1-11. DOI: 10.11729/syltlx20150060
    [7]LIAO Qin, XU Sheng-li. The ignition delay measurement of atomized kerosene air mixture in an aerosol shock tube[J]. Journal of Experiments in Fluid Mechanics, 2009, 23(3): 70-74,79. DOI: 10.3969/j.issn.1672-9897.2009.03.015
    [8]WANG Su, CUI Ji-ping, FAN Bing-cheng, HE Yu-zhong. Effect of enhancers on ignition characteristics of heavy hydrocarbon fuels[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(2): 25-28,45. DOI: 10.3969/j.issn.1672-9897.2007.02.006
    [9]GOU Hua-jie, WANG Su, FAN Bing-cheng, HE Yu-zhong, ZHANG Sheng-tao, CUI Ji-ping. Experimental studies of the adsorption in shock tube measurements of the JP-1O ignition delay time[J]. Journal of Experiments in Fluid Mechanics, 2006, 20(4): 69-72. DOI: 10.3969/j.issn.1672-9897.2006.04.013
    [10]SONG Wen-yan, LIU Wei-xiong, HE Wei, BAI Han-chen. Experimental investigation of plasma ignition in supersonic combustor[J]. Journal of Experiments in Fluid Mechanics, 2006, 20(4): 20-24. DOI: 10.3969/j.issn.1672-9897.2006.04.003
  • Cited by

    Periodical cited type(13)

    1. 孔维梁,钟鑫宇,韩涵,刘洪. 过冷大水滴双峰分布特性影响冰形机制的数值模拟研究. 气动研究与试验. 2025(01): 24-35 .
    2. 陈海,郭向东,赵荣,易贤. 基于自研喷嘴的冻雨结冰云雾条件试验匹配方法. 气动研究与试验. 2025(02): 75-81 .
    3. 桑旭,金哲岩,杨志刚,余放. 水滴在气流中变形破碎过程的数值模拟研究. 上海交通大学学报. 2024(04): 419-427 .
    4. 刘翔,刘文淇,赵梁,汝佳兴,卫洪森,张爱聆. 机翼结冰特性及复杂流场分析研究进展. 航空工程进展. 2024(04): 130-142 .
    5. 王利平,王福新,刘洪. 过冷大水滴环境粒径分布模拟方法研究进展. 航空学报. 2024(S1): 6-25 .
    6. 陈勇,孔维梁,刘洪. 飞机过冷大水滴结冰气象条件运行设计挑战. 航空学报. 2023(01): 7-21 .
    7. 李斯,束珺,张志强,顾洪宇. 冰风洞过冷大水滴云雾水滴质量分布模拟. 南京航空航天大学学报. 2023(01): 146-153 .
    8. 陈海,郭向东,赵荣,易贤,王丹. 冻细雨分布匹配的量化评估方法. 南京航空航天大学学报. 2023(02): 233-240 .
    9. 陈方备,戴铮,崔燚,吴健. 有限空间竖直壁面的结冰特性. 航空学报. 2023(S2): 274-284 .
    10. 马金博,付冬梅,王高远,郝莲,王丹. 待机状态下机翼结冰的快速计算方法. 民用飞机设计与研究. 2022(02): 67-75 .
    11. 韩涵,李姚,印子斐,孔维梁,刘洪. 过冷大水滴粒径分布的欧拉-拉格朗日混合抽样算法及对冰型影响. 科学技术与工程. 2022(20): 8960-8971 .
    12. 陈舒越,郭向东,王梓旭,刘森云,吴迎春. 结冰风洞过冷大水滴粒径测量初步研究. 实验流体力学. 2021(03): 22-29 . 本站查看
    13. 施红,王均毅,陈佳敏,丁媛媛,张彤. 过冷大水滴条件下结冰相似准则. 航空动力学报. 2019(05): 1101-1110 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (443) PDF downloads (54) Cited by(17)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close