Citation: | QI Sheng, LIU Siyu, XIN Shirong, HE Yong, LIU Yingzu, WANG Zhihua. Experimental study on ignition and combustion of pulverized coal particles clouds under laminar and turbulent conditions[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(3): 61-69. DOI: 10.11729/syltlx20200033 |
[1] |
国家统计局.中华人民共和国2019年国民经济和社会发展统计公报[R]. 2020.
National Bureau of Statistics. Statistical communique of the people's republic of China on the 2019 national economic and social development[R]. 2020.
|
[2] |
LEVENDIS Y A, JOSHI K, KHATAMI R, et al. Combustion behavior in air of single particles from three different coal ranks and from sugarcane bagasse[J]. Combustion and Flame, 2011, 158(3):452-465. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0c06523b0f86732423ce89f8e1a85fc6
|
[3] |
KHATAMI R, STIVERS C, LEVENDIS Y A. Ignition characteristics of single coal particles from three different ranks in O2/N2 and O2/CO2 atmospheres[J]. Combustion and Flame, 2012, 159(12):3554-3568. DOI: 10.1016/j.combustflame.2012.06.019
|
[4] |
KHATAMI R, LEVENDIS Y A. An overview of coal rank influence on ignition and combustion phenomena at the particle level[J]. Combustion and Flame, 2016, 164:22-34. DOI: 10.1016/j.combustflame.2015.10.031
|
[5] |
LIU Y H, GEIER M, MOLINA A, et al. Pulverized coal stream ignition delay under conventional and oxy-fuel combustion conditions[J]. International Journal of Greenhouse Gas Control, 2011, 5(s1):36-46. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0223662666/
|
[6] |
TANIGUCHI M, OKAZAKI H, KOBAYASHI H, et al. Pyrolysis and ignition characteristics of pulverized coal particles[J]. Journal of Energy Resources Technology, 2001, 123(1):32-38. DOI: 10.1115/1.1347989
|
[7] |
MOLINA A, SHADDIX C R. Ignition and devolatilization of pulverized bituminous coal particles during oxygen/carbon dioxide coal combustion[J]. Proceedings of the Combustion Institute, 2007, 31(2):1905-1912. DOI: 10.1016/j.proci.2006.08.102
|
[8] |
SHADDIX C R, MOLINA A. Particle imaging of ignition and devolatilization of pulverized coal during oxy-fuel combustion[J]. Proceedings of the Combustion Institute, 2009, 32(2):2091-2098. DOI: 10.1016/j.proci.2008.06.157
|
[9] |
SUDA T, MASUKO K, SATO J, et al. Effect of carbon dioxide on flame propagation of pulverized coal clouds in CO2/O2 combustion[J]. Fuel, 2007, 86(12-13):2008-2015. DOI: 10.1016/j.fuel.2006.11.038
|
[10] |
YUAN Y, LI S Q, LI G D, et al. The transition of heterogeneous-homogeneous ignitions of dispersed coal particle streams[J]. Combustion and Flame, 2014, 161(9):2458-2468. DOI: 10.1016/j.combustflame.2014.03.008
|
[11] |
BALUSAMY S, KAMAL M M, LOWE S M, et al. Laser diagnostics of pulverized coal combustion in O2/N2 and O2/CO2 conditions:velocity and scalar field measurements[J]. Experiments in Fluids, 2015, 56(5):108. DOI: 10.1007/s00348-015-1965-z
|
[12] |
BALUSAMY S, SCHMIDT A, HOCHGREB S. Flow field measurements of pulverized coal combustion using optical diagnostic techniques[J]. Experiments in Fluids, 2013, 54(5):1534. DOI: 10.1007/s00348-013-1534-2
|
[13] |
HAYASHI J, HASHIMOTO N, NAKATSUKA N, et al. Soot formation characteristics in a lab-scale turbulent pulverized coal flame with simultaneous planar measurements of laser induced incandescence of soot and Mie scattering of pulverized coal[J]. Proceedings of the Combustion Institute, 2013, 34(2):2435-2443. DOI: 10.1016/j.proci.2012.10.002
|
[14] |
HAYASHI J, HASHIMOTO N, NAKATSUKA N, et al. Simultaneous imaging of Mie scattering, PAHs laser induced fluorescence and soot laser induced incandescence to a lab-scale turbulent jet pulverized coal flame[J]. Proceedings of the Combustion Institute, 2019, 37(3):3045-3052. DOI: 10.1016/j.proci.2018.09.028
|
[15] |
HWANG S M, KUROSE R, AKAMATSU F, et al. Application of optical diagnostics techniques to a laboratory-scale turbulent pulverized coal flame[J]. Energy & Fuels, 2005, 19(2):382-392. DOI: 10.1021/ef049867z
|
[16] |
SUNG Y, LEE S, EOM S, et al. Optical non-intrusive measurements of internal recirculation zone of pulverized coal swirling flames with secondary swirl intensity[J]. Energy, 2016, 103:61-74. DOI: 10.1016/j.energy.2015.12.095
|
[17] |
SUNG Y M, MOON C E, KIM J R, et al. Influence of pulverized coal properties on heat release region in turbulent jet pulverized coal flames[J]. Experimental Thermal and Fluid Science, 2011, 35(4):694-699. DOI: 10.1016/j.expthermflusci.2011.01.003
|
[18] |
XU K L, WU Y X, WANG Z N, et al. Experimental study on ignition behavior of pulverized coal particle clouds in a turbulent jet[J]. Fuel, 2016, 167:218-225. DOI: 10.1016/j.fuel.2015.11.027
|
[19] |
许开龙, 俞伟伟, 吴玉新, 等.一次风速度对煤颗粒群着火特性影响的实验研究[J].燃烧科学与技术, 2014, 20(4):313-318. http://d.old.wanfangdata.com.cn/Periodical/rskxyjs201404006
XU K L, YU W W, WU Y X, et al. Experimental study on effects of primary flow velocity on ignition of coal particles[J]. Journal of Combustion Science and Technology, 2014, 20(4):313-318. http://d.old.wanfangdata.com.cn/Periodical/rskxyjs201404006
|
[20] |
许开龙, 俞伟伟, 吴玉新, 等.一次风氧浓度对煤颗粒群着火特性影响的实验研究[J].工程热物理学报, 2013, 34(10):1964-1968. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcrwlxb201310040
XU K L, YU W W, WU Y X, et al. Effects of primary flow oxygen concentration on ignition of group coal particles[J]. Journal of Engineering Thermophysics, 2013, 34(10):1964-1968. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcrwlxb201310040
|
[21] |
俞伟伟, 吴玉新, 许开龙, 等.湍流条件下煤粉颗粒群着火特性实验研究[J].工程热物理学报, 2016, 37(2):443-447. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcrwlxb201602045
YU W W, WU Y X, XU K L, et al. Experimental investigation on characteristics of coal particle stream ignition under turbulent condition[J]. Journal of Engineering Thermophysics, 2016, 37(2):443-447. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcrwlxb201602045
|
[1] | KONG Xiaoping, CHEN Wei, LUO Shichao, LYU Minglei, QU Tao, WU Liyin. Study on calibration of effective test time in high enthalpy shock tunnel[J]. Journal of Experiments in Fluid Mechanics, 2025, 39(1): 1-7. DOI: 10.11729/syltlx20230087 |
[2] | YANG Yang, QIAN Fengxue, ZHANG Changfeng, LIU Zhiyong. Research on wind tunnel test technology of sonic boom measurement based on probe[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(6): 92-100. DOI: 10.11729/syltlx20210193 |
[3] | CHEN Aiguo, TIAN Ying, WANG Jie, YANG Yanguang, LI Zhihui, LI Zhonghua, LI Zhenqian. Measurement investigation of rotational temperature and vibrational temperature in hypersonic wind tunnel rarefied flow field[J]. Journal of Experiments in Fluid Mechanics. DOI: 10.11729/syltlx20210192 |
[4] | LI Qiang, WAN Bingbing, ZHUANG Yu, ZHAO Jinshan. Experimental study on influence of incoming total temperature on hypersonic boundary layer transition[J]. Journal of Experiments in Fluid Mechanics. DOI: 10.11729/syltlx20220081 |
[5] | ZHANG Ying, LIU Nan. Numerical simulation and experimental test of unsteady flow field for oscillating vanes gust generator in high-speed wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(5): 83-89. DOI: 10.11729/syltlx20210093 |
[6] | LAI Qingren, LIU Qinglin, GUO Long, ZHANG Pingtao, YI Xian. Icing and anti-icing test technology of aero-engine based on large-scale icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(3): 1-8. DOI: 10.11729/syltlx20200067 |
[7] | CAI Ming, GAO Limin, LIU Zhe, LI Haoxue, CHEN Shun. Cascade testing for a subsonic compressor linear cascade and its modification[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(2): 36-42. DOI: 10.11729/syltlx20200079 |
[8] | Fu Yang'aoxiao, Dong Weizhong, Ding Mingsong, Liu Qingzong, Gao Tiesuo, Jiang Tao. Numerical simulation of thermochemical non-equilibrium flow field in arc-jet tunnel[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 1-12. DOI: 10.11729/syltlx20180138 |
[9] | Luo Yue, Zhou Wei, Yang Hong, Chen Wei. CFD analysis of the arc heater turbulent flow field of flat plate testing[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(2): 86-92. DOI: 10.11729/syltlx20160088 |
[10] | Wu Jinhua, Sun Haisheng, Shen Zhihong, Jiang Yubiao. 旋转流场下的振荡动导数试验技术研究[J]. Journal of Experiments in Fluid Mechanics, 2014, (4): 54-58. DOI: 10.11729/syltlx20130057 |
1. |
雒卫廷. 大展弦比复合材料机翼结构细节抗疲劳优化. 兵器装备工程学报. 2020(03): 164-168 .
![]() | |
2. |
苗磊,李建强,李耀华,何成军,张诣,徐志伟. 风洞天平静态校准与使用状态一致性研究. 中国测试. 2020(08): 158-164 .
![]() |