Liu Erwei, Xu Shengli. Flow field visualization for ethylene/air auto-ignition at different pressures and temperatures in a rectangular shock tube[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(1): 62-71. DOI: 10.11729/syltlx20180051
Citation: Liu Erwei, Xu Shengli. Flow field visualization for ethylene/air auto-ignition at different pressures and temperatures in a rectangular shock tube[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(1): 62-71. DOI: 10.11729/syltlx20180051

Flow field visualization for ethylene/air auto-ignition at different pressures and temperatures in a rectangular shock tube

More Information
  • Received Date: April 16, 2018
  • Revised Date: May 30, 2018
  • Flow field visualization for the auto-ignition of the ethylene/air mixture is key important in understanding properties and characteristics of the flame generation and propagation. High-speed photography was used in experiments and ICCD camera was triggered by the flame signal located at the test section. The series of images for the auto-ignition flow field were obtained at different temperatures (T5) and pressures (p5) in a rectangular shock tube. In the case of p5 being 106kPa, auto-ignition occurs and the initial flame is close to the tube end of shock reflection when T5 is 1210K. Then, the flame propagates upstream (right side) and evolves as a planar one. The vortex-lets are obviously embedded in the flame surface. The flame front gradually evolves to be vertical to the tube axis as it propagates upstream. In contrast to decreasing T5, the initial flame becomes thicker and moves away from the tube end of shock reflection. More-over, the flame emission becomes weaker corresponding to the lower reaction rate. Also, the flame decays from a planar front into several irregular zones. When T5 is 1077K, the auto-ignition occurs far away from the tube end of shock reflection, and then propagates upstream and downstream. With increasing p5, the flames emit strongly and the vortex-lets almost disappear on flame surfaces. When p5 are 265 and 419kPa, respectively, the local explosions take place frequently. These local explosions merge into an approximately planar front and propagate upstream with time going by.
  • [1]
    Hanson R K, Davidson D F. Recent advances in laser absorption and shock tube methods for studies of combustion chemistry[J]. Progress in Energy & Combustion Science, 2014, 44(5):103-114. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=32a48adc67662fe720c9b40098405349
    [2]
    Ren W, Davidson D F, Hanson R K. IR laser absorption diagnostic for C2H4 in shock tube kinetics studies[J]. International Journal of Chemical Kinetics, 2012, 44(6):423-432. DOI: 10.1002/kin.v44.6
    [3]
    Barari G, Pryor O, Koroglu B, et al. High temperature shock tube experiments and kinetic modeling study of diisopropyl ketone ignition and pyrolysis[J]. Combustion & Flame, 2017, 177:207-218. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=44a2d934b262dc7667b3fd5aa0b0fe26
    [4]
    Ning H B, Wu J J, Ma L H, et al. Combined ab initio, kinetic modeling, and shock tube study of the thermal decomposition of ethyl formate[J]. The Journal of Physical Chemistry A, 2017, 121(35):6568-6579. DOI: 10.1021/acs.jpca.7b05382
    [5]
    李兰, 陈其盛, 赵文涛.基于成像的RP-3煤油在激波管内自点火过程研究[J].推进技术, 2015, 36(10):1504-1508. http://d.old.wanfangdata.com.cn/Periodical/tjjs201510008

    Li L, Chen Q S, Zhao W T. A study of RP-3 autoignition in shock tube based on imaging[J]. Journal of Propulsion Techno-logy, 2015, 36(10):1504-1508. http://d.old.wanfangdata.com.cn/Periodical/tjjs201510008
    [6]
    廖钦.煤油及其裂解产物自点火现象的初步实验研究[D].合肥: 中国科学技术大学, 2009. http://cdmd.cnki.com.cn/Article/CDMD-10358-2009110958.htm

    Liao Q. Experimental studies on autoignition phnomena of kerosene and cracked kerosene in a shock tube[D]. Hefei: University of Science and Technology of China, 2009. http://cdmd.cnki.com.cn/Article/CDMD-10358-2009110958.htm
    [7]
    王高峰.基于激波管实验平台的甲烷燃烧化学动力学机理研究[D].合肥: 中国科学技术大学, 2008. http://cdmd.cnki.com.cn/Article/CDMD-10358-2009024956.htm

    Wang G F. A shock tube study of methane combustion chemical kinetics mechanism[D]. Hefei: University of Science and Technology of China, 2008. http://cdmd.cnki.com.cn/Article/CDMD-10358-2009024956.htm
    [8]
    Herzler J, Jerig L, Roth P. Shock-tube study of the ignition of propane at intermediate temperatures and high pressures[J]. Combustion Science & Technology, 2004, 176(10):1627-1637. http://cn.bing.com/academic/profile?id=bec22ebed9618b4f4e3a2dae9a8b0e70&encoded=0&v=paper_preview&mkt=zh-cn
    [9]
    胡弘浩.乙烯点火特性及其污染效应的激波管研究[D].重庆: 重庆大学, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10611-1012049448.htm

    Hu H H. A shock tube study of ignition delay characteristics of ethylene and comtamination effect[D]. Chongqing: Chongqing University, 2012. http://cdmd.cnki.com.cn/Article/CDMD-10611-1012049448.htm
    [10]
    Baker J A, Skinner G B. Shock-tube studies on the ignition of ethylene-oxygen-argon mixtures[J]. Combustion & Flame, 1972, 19(3):347-350. http://cn.bing.com/academic/profile?id=d47422c247a6bfc2c9a72aece709c7cb&encoded=0&v=paper_preview&mkt=zh-cn
    [11]
    Suzuki M, Moriwaki T, Okazaki S, et al. Oxidation of ethylene in shock tube[J]. Astronautica Acta, 1973, 18(5):359-365. http://cn.bing.com/academic/profile?id=8ee245eea4938d57a7aa5d612a979c44&encoded=0&v=paper_preview&mkt=zh-cn
    [12]
    Brown C J, Thomas G O. Experimental studies of shock-induced ignition and transition to detonation in ethylene and propane mixtures[J]. Combustion & Flame, 1999, 117(4):861-870. http://cn.bing.com/academic/profile?id=45b8d493fc3ef59ad3bd48381bc9e406&encoded=0&v=paper_preview&mkt=zh-cn
    [13]
    Cadman P, Bambrey R J, Box S K, et al. Ethylene combustion studied over a wide temperature range in high-temperature shock waves[J]. Combustion Science & Technology, 2002, 174(11-2):111-127. http://cn.bing.com/academic/profile?id=0024ddd0f00d3b071b32ebe639cf0bae&encoded=0&v=paper_preview&mkt=zh-cn
    [14]
    Saxena S, Kahandawala M S P, Sidhu S S. A shock tube study of ignition delay in the combustion of ethylene[J]. Combustion & Flame, 2011, 158(6):1019-1031. http://cn.bing.com/academic/profile?id=e1b428a0420bc7aa851798c81f57e8fc&encoded=0&v=paper_preview&mkt=zh-cn
    [15]
    梁金虎.煤油点火延时特性及其污染效应的激波管研究[D].重庆: 重庆大学, 2011. http://cdmd.cnki.com.cn/Article/CDMD-10611-1012008763.htm

    Liang J H. Ignition delay characteristics study of kerosene and contaminated kerosene in shock tube[D]. Chongqing: Chongqing University, 2011. http://cdmd.cnki.com.cn/Article/CDMD-10611-1012008763.htm
    [16]
    Deng F Q, Pan Y S, Sun W C, et al. Comparative study of the effects of nitrous oxide and oxygen on ethylene ignition[J]. Energy & Fuels, 2017, 31(12):14116-14128. http://cn.bing.com/academic/profile?id=ad573a7c017db8d45d134c5159eb9dc9&encoded=0&v=paper_preview&mkt=zh-cn
    [17]
    Pfahl U, Fieweger K and Adomeit G. Self-ignition of diesel-relevant hydrocarbon-air mixtures under engine conditions[J]. Symposium (International) on Combustion, 1996, 26(1):781-789. DOI: 10.1016/S0082-0784(96)80287-6
  • Cited by

    Periodical cited type(18)

    1. 韩笑,高创,郑怡彤,刘小兵. 切角凹槽矩形截面桥塔的气动特性试验研究. 石家庄铁道大学学报(自然科学版). 2024(01): 9-15+23 .
    2. 白桦,刘博祥,姬乃川,李加武. 节段模型二元端板合理尺寸估算方法. 振动与冲击. 2023(02): 312-320 .
    3. 王仰雪,刘庆宽,靖洪淼,李震,孙一飞. 倾斜栏杆对流线型箱梁涡激振动性能影响的试验研究. 振动与冲击. 2023(06): 232-239+254 .
    4. 于畅,仇法梅,田学东,杨群,刘小兵. 圆角矩形柱平均气动力特性的雷诺数效应试验研究. 石家庄铁道大学学报(自然科学版). 2023(02): 29-34 .
    5. 杨群,于畅,刘小兵,刘庆宽. 不同圆角率的方形断面斯特罗哈数的雷诺数效应研究. 振动与冲击. 2023(11): 223-231 .
    6. 刘庆宽,王仰雪,孙一飞,李震,韩原,靖洪淼. 栏杆高度对流线型箱梁涡振性能影响的试验研究. 湖南大学学报(自然科学版). 2023(07): 140-150 .
    7. 刘路路,杨皓然,邹云峰,何旭辉,韩艳,陈志强. 公铁同层双幅非对称主梁气动干扰特性研究. 铁道科学与工程学报. 2023(10): 3861-3872 .
    8. 杨群,于畅,于文文,刘小兵. 圆角方柱气动特性的风洞试验研究. 振动与冲击. 2023(24): 59-68 .
    9. 韩振,李波,甄伟,杨庆山,田玉基. 宽厚比为5的超高层建筑风荷载特性研究. 哈尔滨工程大学学报. 2022(02): 196-202 .
    10. 张庆华,马文勇,杨杰,张彦,周帅伟. 不同风倾角下典型等边角钢静风力风洞试验研究. 振动工程学报. 2022(02): 277-283 .
    11. 白桦,王涵,姬乃川,李加武. 节段模型长宽比对风洞测力试验及计算分析的影响. 中国公路学报. 2022(08): 202-212 .
    12. 杨群,刘庆宽,韩瑞,刘小兵. 不同圆角率的方形断面气动特性的雷诺数效应. 振动与冲击. 2020(04): 150-156 .
    13. 沈国辉,姚剑锋,郭勇,邢月龙,楼文娟. 直径30 cm圆柱的气动力参数和绕流特性研究. 振动与冲击. 2020(06): 22-28 .
    14. 温青,池俊豪,华旭刚,王修勇,孙洪鑫. 端部条件和展弦比对矩形断面节段模型气动力特征的影响. 实验流体力学. 2020(04): 36-43 . 本站查看
    15. 任若松,梁新华,刘小兵,马文勇,刘庆宽. 准流线型桥梁断面气动力特性的雷诺数效应研究. 工程力学. 2020(S1): 139-144+167 .
    16. 李海飞,梁新华,孙一飞,崔会敏,刘庆宽. 流线型桥梁断面表面脉动风荷载特性研究. 工程力学. 2020(S1): 242-248+260 .
    17. 马文勇,汪冠亚,郑熙,陈铁,李智,张程远,方平治. 端部状态对斜置圆柱气动力分布的影响. 实验流体力学. 2019(02): 43-50 . 本站查看
    31. 杨群,刘庆宽,孙亚松,刘小兵. 圆角方形断面气动特性试验. 振动.测试与诊断. 2020(01): 140-147+208 .

    Other cited types(16)

Catalog

    Article Metrics

    Article views (242) PDF downloads (2) Cited by(34)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close