Citation: | Xiong Moyou, Le Jialing, Huang Yuan, Song Wenyan, Yang Shunhua, Zheng Zhonghua. Experimental and simulation study of aeroengine combustor based on CARS technology and UFPV approach[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(5): 15-23. DOI: 10.11729/syltlx20170090 |
[1] |
Jin J, Liu D H. Recent advances in turbulent two-phase combustion models[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2016, 48(3):304-309.
|
[2] |
Legier J P, Poinsot T, Veynante D. Dynamically thickened flame LES model for premixed and non-premixed turbulent combustion[C]//Center for Turbulence Research Proceedings of the Summer Program, 2000.
|
[3] |
Selle L, Lartigue G, Poinsot T, et al. Large-eddy simulation of turbulent combustion for gas turbines with reduced chemistry[C]//Center for Turbulence Research Proceedings of the Summer Program, 2002.
|
[4] |
Yang J H, Liu F Q, Mao Y H, et al. A partially premixed combustion model and its validation with the turbulent bunsen flame calulation[J]. Journal of Engineering Thermophysics, 2012, 33(10):1793-1797.
|
[5] |
Xiao H H, Shen X B, Sun J H. Experimental study and three-dimensional simulation of premixed hydrogen/air flame propagation in a closed duct[J]. International Journal of Hydrogen Energy, 2012, 37(15):11466-11473. DOI: 10.1016/j.ijhydene.2012.05.006
|
[6] |
Peters N. Laminar diffusion flamelet models in non-premixed turbulent combustion[J]. Progress in Energy and Combustion Science, 1984, 10(3):319-339. DOI: 10.1016/0360-1285(84)90114-X
|
[7] |
Peters N. An asymptotic analysis of nitric oxide formation in turbulent diffusion flames[J]. Combust Sci and Tech, 2007, 19(1-2):39-49.
|
[8] |
Pierce C D. Progress-variable approach for large-eddy simulation of turbulent combustion[D]. Stanford: Stanford University, 2001.
|
[9] |
Pierce C D, Moin P. Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion[J]. Journal of Fluid Mechanics, 2004, (504):73-97.
|
[10] |
Pitsch H, Ihme M, Nevada R. An unsteady/flamelet progress variable method for LES of nonpremixed turbulent combustion[R]. AIAA-2005-557, 2005.
|
[11] |
Sadasivuni S K. LES modelling of non-premixed and partially premixed turbulent flames[D]. Loughborough: Loughborough University, 2009.
|
[12] |
Ihme M, See Y C. Prediction of autoignition in a lifted methane/air flame using an UFPV model[J]. Combustion and Flame, 2010, 157(10):1850-1862. DOI: 10.1016/j.combustflame.2010.07.015
|
[13] |
Bajaj C, Ameen M, Abraham J. Evaluation of an unsteady flamelet progress variable model for autoignition and flame lift-off in diesel jets[J]. Combustion Science and Technology, 2013, 185(3):454-472.[WX)] [WX(4.5mm, 75.5mm] DOI: 10.1080/00102202.2012.726667
|
[14] |
Van Oijen J, De Goey L. Modelling of premixed counterflow flames using the flamelet-generated manifold method[J]. Combustion Theory and Modelling, 2002, 6(3):463-478. DOI: 10.1088/1364-7830/6/3/305
|
[15] |
Ribert G, Gicquel O, Darabiha N, et al. Tabulation of complex chemistry based on self-similar behavior of laminar premixed flames[J]. Combustion and Flame, 2006, 146(4):649-654. DOI: 10.1016/j.combustflame.2006.07.002
|
[16] |
Naud B, Novella R, Pastor J M, et al. RANS modelling of a lifted H2/N2 flame using an unsteady flamelet progress variable apporach with presumed PDF[J]. Combustion and Flame, 2014, 162(4):893-906.
|
[17] |
Xing J W. Applications of chemical equilibrium and flamelet model for the numerical simulation of scramjet[D]. Mianyang: China Aerodynamics Research and Development Center, 2007.
|
[18] |
Fung M C, Inthanvong K, Yang W, et al. Experimental and numerical modelling of nasal spray atomisation[C]. Ninth International Conference on CFD in the Minerals and Process Industries CSIRO, Melbourne, 2012.
|
[19] |
Senecal P K, Schmidt D P. Modeling high-speed viscous liquid sheet atomization[J]. International Journal of Multiphase Flow, 1999, 25(6-7):1073-1097. DOI: 10.1016/S0301-9322(99)00057-9
|
[20] |
Reitz R D. Modeling atomization processes in high pressure vaporizing sprays[J]. Atomization Spray Technoology, 1987, 3(309):309-337.
|
[1] | ZHANG Shuhai, WU Conghai, LUO Yong, HAN Shuaibin, ZHANG Junlong. A brief review on the numerical studies of the fundamental problems for the shock associated noise of the supersonic jets[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(1): 1-27. DOI: 10.11729/syltlx20230075 |
[2] | ZHANG Hongjian, ZHANG Yanxin, XIONG Jianjun, ZHAO Zhao, RAN Lin, YI Xian. Numerical simulation and experimental research of Lamb wave propagation characteristics in ice[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(2): 68-77. DOI: 10.11729/syltlx20210170 |
[3] | LIU Guoyin, YAN Weiqing, CHEN Yanfeng, WU Zhichang, ZHANG Shuai. Simulation and experimental study of inlet heating simulator for a turbofan engine[J]. Journal of Experiments in Fluid Mechanics. DOI: 10.11729/syltlx20220141 |
[4] | GE Wenxing, GUI Feng, YUAN Huacheng, HE Mofan, GUO Rongwei. Aerodynamic design and numerical simulation of combined cycle nozzle with small length to height ratio[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(6): 8-17. DOI: 10.11729/syltlx20190142 |
[5] | Wang Xiaopeng, Zhang Chen'an, Zhai Jian, Wang Famin, Ye Zhengyin. Experimental study on the aero-heating characteristics of waverider in the high enthalpy shock wave tunnel[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(4): 52-57. DOI: 10.11729/syltlx20190080 |
[6] | Wang Guolin, Zhou Yinjia, Jin Hua, Meng Songhe. Study on the influence of catalytic effect on the aerothermal environment by the flow-heat transfer coupling numerical analysis[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 13-19. DOI: 10.11729/syltlx20180159 |
[7] | Fu Yang'aoxiao, Dong Weizhong, Ding Mingsong, Liu Qingzong, Gao Tiesuo, Jiang Tao. Numerical simulation of thermochemical non-equilibrium flow field in arc-jet tunnel[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 1-12. DOI: 10.11729/syltlx20180138 |
[8] | Wang Guolin, Meng Songhe, Jin Hua. The validity analysis of ground simulation test for non-ablative thermal protection materials[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6): 79-87. DOI: 10.11729/syltlx20180122 |
[9] | Liu Litao, Jin Ling, Zhu Minghong, Li Shiwei, Jiang Kelin. Numerical simulation of support interference and distortion effect on flying wing in low speed wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(5): 54-60. DOI: 10.11729/syltlx20180018 |
[10] | Lei Yao, Ji Yuxia, Wang Changwei. Numerical simulation and experimental study on aerodynamics of the micro coaxial rotors[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(5): 67-73. DOI: 10.11729/syltlx20160193 |