Fang Yuanqi, Li Lin, Zhong Liang, Yu Yu, Cai Guohan, Chen Kaixi, Chen Jiao, Wang Gaofeng. Experimental study of the flow fields of the impinging jet flames using Laser Doppler Velocimetry (LDV)[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(1): 79-88. DOI: 10.11729/syltlx20160161
Citation: Fang Yuanqi, Li Lin, Zhong Liang, Yu Yu, Cai Guohan, Chen Kaixi, Chen Jiao, Wang Gaofeng. Experimental study of the flow fields of the impinging jet flames using Laser Doppler Velocimetry (LDV)[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(1): 79-88. DOI: 10.11729/syltlx20160161

Experimental study of the flow fields of the impinging jet flames using Laser Doppler Velocimetry (LDV)

More Information
  • Received Date: October 25, 2016
  • Revised Date: April 26, 2018
  • A Laser Doppler Velocimetry system containing a particle generator, a particle collector and a motorized precision translation stage is built to diagnose the fluid fields of a vertical flow burner. The free jet flame and impinging jet flame are investigated, both for a single nozzle (200W power) and a coaxial dual-nozzle (1200W power). An adaptable signal to noise ratio (SNR) threshold is analyzed and employed for post-processing. The experimental data shows high repeatability and accuracy in multiple measurements. For impinging jet cases, the Reynolds numbers (Re) of low power and high power flame are 1200 and 7200, respectively. The mean velocity vectors and contours are sketched from the measurements at different axial and radial positions, displaying the main characteristics of the impinging jet flame. Meanwhile, a peak of the horizontal velocity occurs roughly at one-nozzle-diameter distance departed from the nozzle axis in the near-wall region. This feature possibly provides an explanation for the mechanism of the secondary peak of the heat transfer captured in previous literatures. For the cases of coaxial jet, a mixing region exists between the outer annular jet and the core jet:the mixing zone is gradually damped with the development of the free jet flame, whereas radially expanding in the impinging flame driven by the high-pressure stagnation region.
  • [1]
    Kadam A R, Tajik A R, Hindasageri V. Heat transfer distribution of impinging flame and air jets-A comparative study[J]. Applied Thermal Engineering, 2016, 92:42-49. DOI: 10.1016/j.applthermaleng.2015.09.008
    [2]
    Chander S, Ray A. An experimental and numerical study of stagnation point heat transfer for methane/air laminar flame impinging on a flat surface[J]. International Journal of Heat and Mass Transfer, 2008, 51(13-14):3595-3607. DOI: 10.1016/j.ijheatmasstransfer.2007.10.018
    [3]
    Remie M J, Cremers M F G, Schreel K R A M. Analysis of the heat transfer of an impinging laminar flame jet[J]. International Journal of Heat and Mass Transfer, 2007, 50(13-14):2816-2827. DOI: 10.1016/j.ijheatmasstransfer.2006.10.053
    [4]
    Chander S, Ray A. Flame impingement heat transfer:A review[J]. Energy Conversion and Management, 2005, 46(18):2803-2837. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0210526622/
    [5]
    徐惊雷, 徐忠, 肖敏, 等.冲击射流的研究概述[J].力学与实践, 1999, 21(6):8-17. http://d.old.wanfangdata.com.cn/Periodical/hkgyjs200602015

    Xu J L, Xu Z, Xiao M, et al. On impinging jet research[J]. Mechanics in Engineering, 1999, 21(6):8-17. http://d.old.wanfangdata.com.cn/Periodical/hkgyjs200602015
    [6]
    Zuckerman N, Lior N. Jet impingement heat transfer:physics, correlations, and numerical modeling[J]. Advances in Heat Transfer, 2006, 39(06):565-631. http://d.old.wanfangdata.com.cn/NSTLHY/NSTL_HYCC0212758683/
    [7]
    过增元.场协同原理与强化传热新技术[M].北京:中国电力出版社, 2004.

    Guo Z Y. Field synergy principle and enhanced heat transfer technology[M]. Beijing:China Electric Power Press, 2004.
    [8]
    张建辉, 尹航, 陈永辰.冲击射流预混火焰的数值模拟[J].能源研究与信息, 2011, 27(1):38-45. DOI: 10.3969/j.issn.1008-8857.2011.01.007

    Zhang J H, Dai R, Chen Y C. Numerical simulation of the impinging-jet premixed flame[J]. Energy Research and Information, 2011, 27(1):38-45. DOI: 10.3969/j.issn.1008-8857.2011.01.007
    [9]
    陈庆光, 徐忠, 张永建.湍流冲击射流流动与传热的数值研究进展[J].力学进展, 2002, 32(1):92-108. DOI: 10.3321/j.issn:1000-0992.2002.01.008

    Chen Q G, Xu Z, Zhang Y J. Advances in numerical studies of turbulent impinging jet flow and heat transfer[J]. Advances in Mechanics, 2002, 32(1):92-108. DOI: 10.3321/j.issn:1000-0992.2002.01.008
    [10]
    苑达, 王丙兴, 王昭东, 等.单喷嘴冲击射流的数值模拟[J].中国冶金, 2014, 24(增刊):222-226. http://d.old.wanfangdata.com.cn/Conference/8507565

    Yuan D, Wang B X, Wang Z D, et al. Numerical simulation of single nozzle jet for ultra-fast cooling[J]. China Metallurgy, 2014, 24(s):222-226. http://d.old.wanfangdata.com.cn/Conference/8507565
    [11]
    徐惊雷, 徐忠, 张堃元, 等.雷诺数对半封闭紊流冲击射流流场影响的实验研究[J].南京航空航天大学学报, 2001, 33(2):187-190. DOI: 10.3969/j.issn.1005-2615.2001.02.020

    Xu J L, Xu Z, Zhang K Y, et al. Experimental study of Reynolds number effect on turbulent impinging jet flow[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2001, 33(2):187-190. DOI: 10.3969/j.issn.1005-2615.2001.02.020
    [12]
    熊霏, 姚朝晖, 郝鹏飞, 等.冲击射流的PIV实验研究[J].流体力学实验与测量, 2004, 18(3):68-72. DOI: 10.3969/j.issn.1672-9897.2004.03.015

    Xiong F, Yao Z H, Hao P F, et al. PIV investigation of impinging jet[J]. Experiments and Measurements in Fluid Mechanics. 2004, 18(3):68-72. DOI: 10.3969/j.issn.1672-9897.2004.03.015
    [13]
    陈庆光, 徐忠, 吴玉林, 等.矩形管湍流冲击射流场的PIV实验研究[J].实验流体力学, 2005, 19(1):87-93. DOI: 10.3969/j.issn.1672-9897.2005.01.018

    Chen Q G, Xu Z, Wu Y L, et al. Experimental study on rectangular turbulent impinging jet flow field by PIV technique[J]. Journal of Experiments in Fluid Mechanics, 2005, 19(1):87-93. DOI: 10.3969/j.issn.1672-9897.2005.01.018
    [14]
    姚朝晖, 侯修洲, 郝鹏飞.超声速冲击射流的PIV实验研究[J].实验流体力学, 2007, 21(4):32-35. DOI: 10.3969/j.issn.1672-9897.2007.04.007

    Yao Z H, Hou X Z, Hao P F. PIV experimental research on supersonic impinging jet[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(4):32-35. DOI: 10.3969/j.issn.1672-9897.2007.04.007
    [15]
    Milson A, Chigier N A. Studies of methane and methane-air flames impinging on a cold plate[J]. Combustion and Flame, 1973, 21(3):295-305. DOI: 10.1016/S0010-2180(73)80052-5
    [16]
    Van der Meer T H. Stagnation point heat transfer from turbulent low reynolds number jets and flame jets[J]. Experimental Thermal and Fluid Science, 1991, 4(1):115-126. DOI: 10.1016/0894-1777(91)90025-M
    [17]
    Chander S, Ray A. Experimental and numerical study on the occurrence of off-stagnation peak in heat flux for laminar methane/air flame impinging on a flat surface[J]. International Journal of Heat and Mass Transfer, 2011, 54(5-6):1179-1186. DOI: 10.1016/j.ijheatmasstransfer.2010.10.035
    [18]
    Li H B, Zhen H S, Leung C W. Effects of plate temperature on heat transfer and emissions of impinging flames[J]. International Journal of Heat and Mass Transfer, 2010, 53(19-20):4176-4184. DOI: 10.1016/j.ijheatmasstransfer.2010.05.040
    [19]
    Li H B, Zhen H S, Leung C W. Nozzle effect on heat transfer and CO emission of impinging premixed flames[J]. International Journal of Heat and Mass Transfer, 2011, 54(1-3):625-635. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4877613a160a185d70cda5dceb4cbda4
    [20]
    O'Donovan T S, Murray D B. Jet impingement heat transfer-Part Ⅰ:Mean and root-mean-square heat transfer and velocity distributions[J]. International Journal of Heat and Mass Transfer, 2007, 50(17-18):3291-3301. DOI: 10.1016/j.ijheatmasstransfer.2007.01.044
    [21]
    O'Donovan T S, Murray D B. Jet impingement heat transfer-Part Ⅱ:A temporal investigation of heat transfer and local fluid velocities[J]. International Journal of Heat and Mass Transfer, 2007, 50(17-18):3302-3314. DOI: 10.1016/j.ijheatmasstransfer.2007.01.047
    [22]
    Goldstein R J, Timmers J F. Visualization of heat transfer from arrays of impinging jets[J]. International Journal of Heat and Mass Transfer, 1982, 25(12):1857-1868. DOI: 10.1016/0017-9310(82)90108-9
    [23]
    O'Donovan T S. Fluid flow and heat transfer of an impinging air jet[D]. Dublin, Ireland: University of Dublin, 2005.
    [24]
    Chen Y C, Peters N, Schneemann G A, et al. The detailed flame structure of highly stretched turbulent premixed methane-air flames[J]. Combustion and Flame, 1996, 107(3):223-244. DOI: 10.1016/S0010-2180(96)00070-3
    [25]
    Zhou B, Brackmann C, Li Q, Wang Z, et al. Distributed reactions in highly turbulent premixed methane/air flames. Part Ⅰ. Flame structure characterization[J]. Combustion and Flame, 2014, 162(7):2937-2953. http://cn.bing.com/academic/profile?id=39e810f42f703acd8e3b650a6c7e69d9&encoded=0&v=paper_preview&mkt=zh-cn
    [26]
    陆嘉, 廖光煊, 陶常法.甲烷射流扩散火焰结构试验研究[J].安全与环境学报, 2010, 10(6):164-168. DOI: 10.3969/j.issn.1009-6094.2010.06.038

    Lu J, Liao G X, Tao C F, Experimental study of flame shape of methane jet diffusion flame[J]. Journal of Safety and Environment, 2010, 10(6):164-168. DOI: 10.3969/j.issn.1009-6094.2010.06.038
    [27]
    Dong L L, Cheung C S, Leung C W. Heat transfer characteristics of an impinging inverse diffusion flame jet-Part Ⅰ:Free flame structure[J]. International Journal of Heat and Mass Transfer, 2007, 50(25-26):5108-5123. DOI: 10.1016/j.ijheatmasstransfer.2007.07.018
    [28]
    Dong L L, Cheung C S, Leung C W. Heat transfer characteristics of an impinging inverse diffusion flame jet-Part Ⅱ:Impinging flame structure and impingement heat transfer[J]. International Journal of Heat and Mass Transfer, 2007, 50(25-26):5124-5138. DOI: 10.1016/j.ijheatmasstransfer.2007.07.017
    [29]
    Buresti G, Talamelli A, Petagna P. Experimental characterization of the velocity field of a coaxial jet configuration[J]. Expe-rimental Thermal and Fluid Science, 1994, 9(2):135-146. DOI: 10.1016/0894-1777(94)90106-6
    [30]
    令狐昌鸿, 王高峰, 钟亮, 等.旋流流化床固体粒子发生器: 中国, 201610646669.7[P]. 2016-11-23.

    Linhu C H, Wang G F, Zhong L, et al. Swirling fluidized bed solid particle generator: China, 201610646669.7[P]. 2016-11-23.
    [31]
    沈熊.激光测速技术(LDV)诞生50周年启示[J].实验流体力学, 2014, 28(6):51-55. http://www.syltlx.com/CN/abstract/abstract10789.shtml

    Shen X. A historical review for the 50th anniversary of laser doppler velocimetry[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(6):51-55. http://www.syltlx.com/CN/abstract/abstract10789.shtml
    [32]
    费业泰.误差理论与数据处理[M].第7版.北京:机械工业出版社, 2015.

    Fei Y T. Error theory and data processing[M]. 7th ed. Beijing:China Machine Press, 2015.
  • Related Articles

    [1]DU Baihe, ZHANG Songhe, GE Qiang, WANG Maogang. Study on flow field characteristics of inert gas-air hybrid arc[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(5): 69-75. DOI: 10.11729/syltlx20210052
    [2]ZHANG Xinghuan, ZHANG Pingtao, PENG Bo, YI Xian. Prediction of icing wind tunnel temperature field with machine learning[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(5): 8-15. DOI: 10.11729/syltlx20210196
    [3]Fu Cheng, Zhao Bo, Xu Dachuan, Liao Daxiong, Pei Haitao, Zhu Bo, Qin Honggang. Investigation on flow turbulent characteristics of plate-fin and tube-fin heat exchanger[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(6): 22-27. DOI: 10.11729/syltlx20190036
    [4]Wang Feng, Xu Jinglei, Wang Yangsheng. Study of flow field characteristics of an over-under TBCC exhaust system during mode transition process[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 68-75. DOI: 10.11729/syltlx20190037
    [5]Gong Jishuang, Zhou Lin, Zhang Yining, Teng Honghui. Investigation on flow field structure of rotating detonation using the method of characteristics[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(1): 89-96. DOI: 10.11729/syltlx20180072
    [6]Liao Daxiong, Chen Jiming, Zheng Juan, Chen Qin, Pei Haitao, Wu Shenghao. General performance of 0.6m continuous transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6): 88-93. DOI: 10.11729/syltlx20170086
    [7]Yang Hong, Luo Yue, Wu Dong, Zhou Ping. Study on supersonic turbulence plate ablation flow field in arc heater[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(4): 72-77. DOI: 10.11729/syltlx20170181
    [8]Yu Mingxing, Bai Shuxin, Xu Xiaoliang, Cao Zhanwei. Research on method for evaluating the thermal protective performance of non-catalysis material in non-equilibrium flow[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(4): 84-89. DOI: 10.11729/syltlx20170084
    [9]Luo Yue, Zhou Wei, Yang Hong, Chen Wei. CFD analysis of the arc heater turbulent flow field of flat plate testing[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(2): 86-92. DOI: 10.11729/syltlx20160088
    [10]Yang Bo, Liu Sen. Investigation of the performance of flow field in supersonic/hypersonic wind tunnel with different test section geometry configurations[J]. Journal of Experiments in Fluid Mechanics, 2014, (4): 59-64. DOI: 10.11729/syltlx20130023
  • Cited by

    Periodical cited type(18)

    1. 韩笑,高创,郑怡彤,刘小兵. 切角凹槽矩形截面桥塔的气动特性试验研究. 石家庄铁道大学学报(自然科学版). 2024(01): 9-15+23 .
    2. 白桦,刘博祥,姬乃川,李加武. 节段模型二元端板合理尺寸估算方法. 振动与冲击. 2023(02): 312-320 .
    3. 王仰雪,刘庆宽,靖洪淼,李震,孙一飞. 倾斜栏杆对流线型箱梁涡激振动性能影响的试验研究. 振动与冲击. 2023(06): 232-239+254 .
    4. 于畅,仇法梅,田学东,杨群,刘小兵. 圆角矩形柱平均气动力特性的雷诺数效应试验研究. 石家庄铁道大学学报(自然科学版). 2023(02): 29-34 .
    5. 杨群,于畅,刘小兵,刘庆宽. 不同圆角率的方形断面斯特罗哈数的雷诺数效应研究. 振动与冲击. 2023(11): 223-231 .
    6. 刘庆宽,王仰雪,孙一飞,李震,韩原,靖洪淼. 栏杆高度对流线型箱梁涡振性能影响的试验研究. 湖南大学学报(自然科学版). 2023(07): 140-150 .
    7. 刘路路,杨皓然,邹云峰,何旭辉,韩艳,陈志强. 公铁同层双幅非对称主梁气动干扰特性研究. 铁道科学与工程学报. 2023(10): 3861-3872 .
    8. 杨群,于畅,于文文,刘小兵. 圆角方柱气动特性的风洞试验研究. 振动与冲击. 2023(24): 59-68 .
    9. 韩振,李波,甄伟,杨庆山,田玉基. 宽厚比为5的超高层建筑风荷载特性研究. 哈尔滨工程大学学报. 2022(02): 196-202 .
    10. 张庆华,马文勇,杨杰,张彦,周帅伟. 不同风倾角下典型等边角钢静风力风洞试验研究. 振动工程学报. 2022(02): 277-283 .
    11. 白桦,王涵,姬乃川,李加武. 节段模型长宽比对风洞测力试验及计算分析的影响. 中国公路学报. 2022(08): 202-212 .
    12. 杨群,刘庆宽,韩瑞,刘小兵. 不同圆角率的方形断面气动特性的雷诺数效应. 振动与冲击. 2020(04): 150-156 .
    13. 沈国辉,姚剑锋,郭勇,邢月龙,楼文娟. 直径30 cm圆柱的气动力参数和绕流特性研究. 振动与冲击. 2020(06): 22-28 .
    14. 温青,池俊豪,华旭刚,王修勇,孙洪鑫. 端部条件和展弦比对矩形断面节段模型气动力特征的影响. 实验流体力学. 2020(04): 36-43 . 本站查看
    15. 任若松,梁新华,刘小兵,马文勇,刘庆宽. 准流线型桥梁断面气动力特性的雷诺数效应研究. 工程力学. 2020(S1): 139-144+167 .
    16. 李海飞,梁新华,孙一飞,崔会敏,刘庆宽. 流线型桥梁断面表面脉动风荷载特性研究. 工程力学. 2020(S1): 242-248+260 .
    17. 马文勇,汪冠亚,郑熙,陈铁,李智,张程远,方平治. 端部状态对斜置圆柱气动力分布的影响. 实验流体力学. 2019(02): 43-50 . 本站查看
    31. 杨群,刘庆宽,孙亚松,刘小兵. 圆角方形断面气动特性试验. 振动.测试与诊断. 2020(01): 140-147+208 .

    Other cited types(16)

Catalog

    Article Metrics

    Article views (280) PDF downloads (14) Cited by(34)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close