Xiang Guangwei, Wang Chao, Wan Liqiang, Mi Peng, Wang Shumin. Design and application of wind tunnel strain gauge balance protective device based on 3D printing[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(6): 100-104. DOI: 10.11729/syltlx20160114
Citation: Xiang Guangwei, Wang Chao, Wan Liqiang, Mi Peng, Wang Shumin. Design and application of wind tunnel strain gauge balance protective device based on 3D printing[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(6): 100-104. DOI: 10.11729/syltlx20160114

Design and application of wind tunnel strain gauge balance protective device based on 3D printing

More Information
  • Received Date: July 24, 2016
  • Revised Date: February 13, 2017
  • The strain gauge balance is the main equipment used in wind tunnel test, which has an important influence on the quality of test data and operational efficiency. To improve the balance self-protection performance and lower balance failure rate in test operations, a quick development method based on three-dimensional (3D) printing for the wind tunnel strain gauge balance (SGB) protective device is proposed. By decomposing the design factors, the key factors pertaining to the design of balance protective device are studied. A design flow and method based on 3D printing is put forward. The 3D printing technology can be applied to the optimization of balance guards in two aspects:(1) to optimize and visualize design schemes; (2) to protect strain gauges and circuit on balances for wind tunnel tests. Both water-cooled balance protective device and assembly type mechanical protective device are designed. For the water-cooled device with complex internal structure, 3D printing technology makes design to be visualized, which is helpful for design verification before manufacturing. The assembly type product, manufactured by means of 3D printing technology, is applied in corresponding balance protection for wind tunnel force measurement test. The perfect combination of strain gauge balances with their highly customized, lightweight balance protective devices by 3D printing, serves not only to protect the strain gauges and wires from damages in the process of calibration, transportation, model assembly and testing, but also to make impressive visual artworks of the balances, rendering them functional, practical, economical and artistic. Compared with machining of a balance protective device in the traditional way, 3D printing can greatly reduce the processing cycle and the cost. Meanwhile design visualization can validate technical solutions in the design stage. Both applications promote the overall performance of the balance.
  • [1]
    刘九卿.应变式称重传感器的技术集成性与环境适应性[J].衡器, 2012, 41(1):3-10. http://www.cqvip.com/QK/92155X/201201/40514643.html

    Liu J Q. Technology integration and environmental adaptability of strain gauge load cell[J]. Weighing Instrument, 2012, 41(1):3-10. http://www.cqvip.com/QK/92155X/201201/40514643.html
    [2]
    HBM GmbH. Measurement:transducer, load cell, data acquisition system. www.hbm.com.
    [3]
    [4]
    李淼.粘贴电阻应变计的实践与探索[J].实验科学与技术, 2009, 7(3):148-151. http://d.wanfangdata.com.cn/Periodical/sykxyjs200903056

    Li M. Practice and exploration on sticking resistance strain gage[J]. Experiment Science and Technology, 2009, 7(3):148-151. http://d.wanfangdata.com.cn/Periodical/sykxyjs200903056
    [5]
    沈观林.应变电测与传感器技术的新发展及应用[J].中国测试, 2011, 37(2):87-91, 96. http://d.wanfangdata.com.cn/Periodical/zgcsjs201102023

    Shen G L. New developments of strain gauge measurement and transducer technique and applications in all kinds of engineers and domains[J]. China Measurement and Test, 2011, 37(2):87-91, 96. http://d.wanfangdata.com.cn/Periodical/zgcsjs201102023
    [6]
    Zimmermann C, Häberli W, Monkewitz M. Precise measurement technology based on new block-type and rotating shaft balances[C]. 27th AIAA Aerodynamic Measurement Technology and Ground Testing Conference, Chicago, Illinois, 2010. DOI: 10.2514/6.2010-4541
    [7]
    Lynn K C, Commo S A, Johnson T H, et al. Thermal and pressure characterization of a wind tunnel force balance using the single vector system[C]. 49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace ExpositionOrlando, Florida, 2011. DOI: 10.2514/6.2011-950
    [8]
    李小丽, 马剑雄, 李萍, 等. 3D打印技术及应用趋势[J].自动化仪表, 2014, 35(1):1-5. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zdyb201401001&dbname=CJFD&dbcode=CJFQ

    Li X L, Ma J X, Li P, et al. 3D printing technology and it's application trend[J]. Aeronautical Science and Technology, Process Automation Instrumentation, 2014, 35(1):1-5. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=zdyb201401001&dbname=CJFD&dbcode=CJFQ
    [9]
    刘铭, 张坤, 樊振中. 3D打印技术在航空制造领域的应用进展[J].装备制造技术, 2013, (12):232-235. DOI: 10.3969/j.issn.1672-545X.2013.12.091

    Liu M, Zhang K, Fan Z Z. Application of 3D printing technology in the field of aviation manufacturing[J]. Equipment Manufacturing Technology, 2013, (12):232-235. DOI: 10.3969/j.issn.1672-545X.2013.12.091
    [10]
    Tyler C. Evaluation of rapid prototyping technologies for use in wind tunnel model fabrication[C]. 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 2005. DOI: 10.2514/6.2005-1301
    [11]
    战培国, 赵昕.风洞试验模型技术新发展[J].航空科学技术, 2011, (5):8-11. http://d.wanfangdata.com.cn/Periodical/hkkxjs201105003

    Zhan P G, Zhao X. New development of model techniques for wind tunnel test[J]. Aeronautical Science and Technology, 2011, (5):8-11. http://d.wanfangdata.com.cn/Periodical/hkkxjs201105003
    [12]
    王超, 张征宇, 殷国富, 等.一种基于光固化快速成型的飞机静弹性风洞试验模型设计方法[J].航空学报, 2014, 35(5):1193-1199. http://www.oalib.com/paper/4695153

    Wang C, Zhang Z Y, Yin G F, et al. A design method of the static aeroelastic aircraft model based on stereolithgraphy for wind tunnel test[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(5):1193-1199. http://www.oalib.com/paper/4695153
    [13]
    De Ponte J D, Pieterse F F, Bidgood P M. Design and development of an experimental six component wind tunnel block balance using optical fibre sensors[C]. 9th International Symposium on Strain-Gauge Balances, Boeing, USA, 2014. http://hdl.handle.net/10204/8835
    [14]
    杜宇雷, 孙菲菲, 原光, 等. 3D打印材料的发展现状[J].徐州工程学院学报(自然科学版), 2014, 29(1):20-24. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=oxzg201401004&dbname=CJFD&dbcode=CJFQ

    Du Y L, Sun F F, Yuan G, et al. Current status of materials for three-dimensional printing[J]. Journal of Xuzhou Institute of Technology (Natural Sciences Edition), 2014, 29(1):20-24. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=oxzg201401004&dbname=CJFD&dbcode=CJFQ
  • Related Articles

    [1]ZHU Chang, XU Guoliang, ZHANG Chengjian, Yang Yifan, WU Jie. Experimental investigation of crossflow instability upon a 6 degree hypersonic sharp cone model with rough surface[J]. Journal of Experiments in Fluid Mechanics. DOI: 10.11729/syltlx20240011
    [2]GAO Nan, LIU Xuanhe. A preliminary study on calibration-free hot-wire anemometry method[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(5): 1-8. DOI: 10.11729/syltlx20230004
    [3]ZHU Bo, CHEN Jiming, WU Wei, PEI Haitao. Experimental investigation of turbulence intensity measurement in continuous transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics. DOI: 10.11729/syltlx20220034
    [4]Fu Cheng, Zhao Bo, Xu Dachuan, Liao Daxiong, Pei Haitao, Zhu Bo, Qin Honggang. Investigation on flow turbulent characteristics of plate-fin and tube-fin heat exchanger[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(6): 22-27. DOI: 10.11729/syltlx20190036
    [5]Yu Tao, Wang Junpeng, Liu Xianghong, Zhao Jiaquan, Wu Jie. Measurements and data processing technology of freestream fluctuations in hypersonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(5): 49-56. DOI: 10.11729/syltlx20180142
    [6]Ma Husheng, Liu Huilong, Qin Tianchao, Du Wei, Shi Peijie, Ren Siyuan. Development of hot-wire probe calibration wind tunnel based on compressible fluid[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(1): 93-99. DOI: 10.11729/syltlx20160108
    [7]Zhu Bo, Peng Qiang, Tang Gengsheng. Digital signal process of low turbulence intensity based on EMD[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(5): 74-79. DOI: 10.11729/syltlx20150148
    [8]Wang Xin, Yang Ying, Ma Yunchi, Ma Weiwei. Research on synchronous measurement of temperature and velocity in melt-blowing flow field based on hot-wire anemometer[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(1): 91-96. DOI: 10.11729/syltlx20150068
    [9]LUN Li-yong, CHEN Hou-lei, CAI Jing-hui. Investigation on calibration method of hot-wire anemometer in high pressure reciprocating flow[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(3): 87-91. DOI: 10.3969/j.issn.1672-9897.2010.03.018
    [10]SHENG Sen-zhi, ZHUANG Yong-ji, LIU Zong-yan. A new type of hot-wire/film anemometer[J]. Journal of Experiments in Fluid Mechanics, 2009, 23(1): 89-93. DOI: 10.3969/j.issn.1672-9897.2009.01.020
  • Cited by

    Periodical cited type(3)

    1. 宋光韬,葛建辉,马钊,王恒,吕郑,徐惊雷. 并联TBCC排气系统稳态与模态转换实验研究. 推进技术. 2024(04): 51-61 .
    2. 赵春梅,王恒,王俊,钟世林,蒲永彬,任亚强. 涡轮冲压组合喷管运动机构布局研究综述. 航空发动机. 2024(06): 13-18 .
    3. 彭波,徐惊雷. 并联TBCC排气系统模态转换过程动态特性研究. 机械制造与自动化. 2022(05): 194-198 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (270) PDF downloads (31) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close