Wei Ran, Che Binghui, Zhang Jun, Sun Chuanbao, Wang Xinlin. The design of a 3-DOF robot arm used forcaptive trajectory simulation in wind tunnel test[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(6): 91-97. DOI: 10.11729/syltlx20150141
Citation: Wei Ran, Che Binghui, Zhang Jun, Sun Chuanbao, Wang Xinlin. The design of a 3-DOF robot arm used forcaptive trajectory simulation in wind tunnel test[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(6): 91-97. DOI: 10.11729/syltlx20150141

The design of a 3-DOF robot arm used forcaptive trajectory simulation in wind tunnel test

More Information
  • Received Date: January 04, 2016
  • Revised Date: April 08, 2016
  • A 3-DOF robot arm design is presented for the Captive Trajectory Simulation (CTS) test in the FL-12 wind tunnel. It is an integrated mechatronics device. The paper introduces its transmission principle design, physical design, control system design, drive element selection calculation and verification, then verifies the design results with dynamical and static mechanics analysis. The results show that the device improves the load in pitch and yaw from 100Nm to 250Nm with control precision from 0.1°to 0.05°, and also improves the load in roll from 10Nm to 20Nm with control precision from 0.1°to 0.05°.The structure of drive element and cable, fairing configuration, overall dimension are optimized to make the device more suitable for the wind tunnel test.
  • [1]
    Andrew G. Design & development of a new captive trajectory simulation model support system[R]. AIAA-99-2165, 1999.
    [2]
    Navair A C, Md P R. Lessons learned in 30 years of store sparation testing[R]. AIAA-2009-0098, 2009.
    [3]
    Carter R, Lind R. Trajectory optimization for guided store separation[R]. AIAA-2012-4686, 2012.
    [4]
    Veazey D T, Hopf J C. Comparison of aero dynamic data obtained in the Arnold Engineering Development Center wind tunnels 4T and 16T[R]. AIAA-1998-2874, 1998.
    [5]
    Coulton D G. Recent developments in data acquisition and control systems at the aircraft research association limited[C]. IEEE Instrumentation in Aerospace Simulation Facilities, 1991.
    [6]
    Garcon F. Recent developments in captive trajectory systems of the ONERA modane wind tunnels[R]. AIAA-2001-0579, 2001.
    [7]
    黄叙辉, 庞旭东. 1.2米跨超声速风洞新型捕获轨迹系统研制[J].实验流体力学, 2008, 22(6):95-98. http://www.syltlx.com/CN/abstract/abstract9619.shtml

    Huang X H, Pang X D. Development of a new captive trajectory simulation system in the 1.2m transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2008, 22(6):95-98. http://www.syltlx.com/CN/abstract/abstract9619.shtml
    [8]
    黄叙辉, 罗新福. FL-24风洞新型捕获轨迹系统设计与发展[J].空气动力学学报, 2008, 30(6):145-149. http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX200802002.htm

    Huang X H, Luo X F. Design & development of a new captive trajectory simulation system in FL-24 wind tunnel[J]. Acta Aerodynamica Sinica, 2008, 30(6):145-149. http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX200802002.htm
    [9]
    崔晓春, 邢汉奇, 张然, 等. FL-2风洞CTS实验技术[C].第一届近代实验空气动力学会议论文集, 2007.
    [10]
    陈万华, 王超琪.某风洞主体结构的有限元分析[J].实验流体力学, 2005, 19(3):90-93. http://www.syltlx.com/CN/abstract/abstract9407.shtml

    Chen W H, Wang C Q. Finite element analysis on main body of a wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2005, 19(3):90-93. http://www.syltlx.com/CN/abstract/abstract9407.shtml
    [11]
    中国人民解放军总装备部军事训练教材编辑委员会.高低速风洞气动与结构设计[M].北京:国防工业出版社, 2003.
  • Cited by

    Periodical cited type(2)

    1. 车兵辉,魏然,曾伟. 风洞CTS试验六自由度机构控制方法研究. 计算机测量与控制. 2018(12): 84-88 .
    2. 贺云,张飞龙,徐志刚,刘哲. 一种基于风洞试验环境的轨迹捕获系统设计. 兵工学报. 2018(12): 2480-2487 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (183) PDF downloads (25) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close