SHI Y J,PENG C,MI P,et al. Development of internal strain gauge balance with variable cross-section axial force flex beam based on Finite Element Analysis[J]. Journal of Experiments in Fluid Mechanics, 2021,35(5):128-133.. DOI: 10.11729/syltlx20200109
Citation: SHI Y J,PENG C,MI P,et al. Development of internal strain gauge balance with variable cross-section axial force flex beam based on Finite Element Analysis[J]. Journal of Experiments in Fluid Mechanics, 2021,35(5):128-133.. DOI: 10.11729/syltlx20200109

Development of internal strain gauge balance with variable cross-section axial force flex beam based on Finite Element Analysis

More Information
  • Received Date: September 08, 2020
  • Revised Date: March 25, 2021
  • Available Online: November 03, 2021
  • When the axial section of internal strain gauge balance is applied large load, especially large moment load, the maximum stress of its flex beam often becomes the main factor limiting the maximum load capacity of the balance. This paper introduces the development of a large moment internal strain gauge balance. The flex beam and measuring beam of the axial section are optimized and improved by using finite element simulation analysis. The shape of the flex beam is improved from traditional constant cross section to variable cross section. The thickness of the middle part of the flex beam is reduced, and the thickness of both ends is increased. The maximum stress on the flex beam is reduced on the basis of maintaining the same axial stiffness of the balance. The axial force measuring beam adopts variable section structure, which reduces the strain gradient on the measuring beam. The finite element analysis shows that the stress distribution on the variable-section flex beam is more uniform than that of the traditional flex beam, and the maximum stress at the root of the variable-section flex beam is reduced by more than 20%. The strain gradient on the measuring beam with variable cross section is reduced by 79% compared with that on the beam with constant cross section. The calibration results of the balance are in good agreement with the finite element analysis results, and the wind tunnel force test also shows that the balance has good stability.
  • [1]
    ZHAI J N, EWALD B, HUFNAGEL K. An investigation on the interference of internal six-component wind tunnel balances with FEM[C]//Proc of the ICIASF '95 Record. International Congress on Instrumentation in Aerospace Simulation Facilities. 1995. doi: 10.1109/ICIASF.1995.519122
    [2]
    LINDELL M C. Finite Element Analysis of a NASA national transonic facility wind tunnel balance[C]//Proc of the International Symposium on Strain-Gage Balances. 1996.
    [3]
    顾岩,虞伟建. 有限元分析法在风洞天平中的应用[J]. 流体力学实验与测量,1999,13(4):82-86.

    GU Y,YU W J. The application of finite element analysis in wind-tunnel balance[J]. Experiments and Measurements in Fluid Mech-anics,1999,13(4):82-86.
    [4]
    RHEW R D. NASA LaRC strain-gage balance design concepts[C]//Proc of the International Symposium on Strain-Gage Balances. 1996.
    [5]
    RHEW R D. Strain-gage balance axial section design optimization using design of experiments[R]. AIAA 2005-7600, 2005. doi: 10.2514/6.2005-7600
    [6]
    KARKEHABADI R, RHEW R D, HOPE D J. Study and analyses on the structural performance of a balance[R]. NASA/TM-2004-213263, 2004.
    [7]
    胡国风. 应变天平矩形截面元件扭转应变计算准度分析[J]. 实验流体力学,2012,26(6):75-78. DOI: 10.3969/j.issn.1672-9897.2012.06.016

    HU G F. Accuracy analysis of the torsion strain calculation of a balance with rectangular cross-section[J]. Journal of Experiments in Fluid Mechanics,2012,26(6):75-78. doi: 10.3969/j.issn.1672-9897.2012.06.016
    [8]
    BOUTEMEDJET A,SAMARDŽIĆ M,ĆURČIĆ D,et al. Wind tunnel measurement of small values of rolling moment using six-component strain gauge balance[J]. Measurement,2018,116:438-450. doi: 10.1016/j.measurement.2017.11.043
    [9]
    WEBB T L, LANDMAN D, BURNS D E, et al. A monolithic internal strain-gage balance design based on design for manufacturability[R]. AIAA 2019-3154, 2019. doi: 10.2514/6.2019-3154
    [10]
    BRET J F, LECONTE P, VIEIRA J P, et al. Rotating shaft balances for CRORs and propellers[R]. AIAA 2015-1790, 2015. doi: 10.2514/6.2015-1790
    [11]
    任宗金,张亚娟,张军,等. 大长径比模型多维气动力测量天平设计[J]. 传感器与微系统,2019,38(2):56-58.

    REN Z J,ZHANG Y J,ZHANG J,et al. Design of multi-dimensional aerodynamic force measurement balance of large length-diameter ratio model[J]. Transducer and Microsystem Technologies,2019,38(2):56-58.
    [12]
    SWAPNA L,BHARATH K,SURESH B S. Shape optimization of a drag force element of a force transducer for wind tunnel measurements[J]. Journal of Mechanical Engineering and Auto-mation,2015,5(3B):33-38. doi: 10.5923/c.jmea.201502.07
    [13]
    闫万方,蒋坤,张江. 基于减小轴向力测量干扰的高精度测力天平研制[J]. 实验流体力学,2018,32(6):61-67. DOI: 10.11729/syltlx20180082

    YAN W F,JIANG K,ZHANG J. Development of a six-component wind tunnel balance with lower interference on axial force measurement[J]. Journal of Experiments in Fluid Mechanics,2018,32(6):61-67. doi: 10.11729/syltlx20180082
    [14]
    熊琳,宫建,王金印,等. 小直径杆式应变天平轴向力元件设计问题的探讨[J]. 实验流体力学,2013,27(5):75-78. DOI: 10.3969/j.issn.1672-9897.2013.05.014

    XIONG L,GONG J,WANG J Y,et al. Discussion about axial force element design of bending-beam strain-gauge balance with small diameter[J]. Journal of Experiments in Fluid Mechanics,2013,27(5):75-78. doi: 10.3969/j.issn.1672-9897.2013.05.014
    [15]
    史玉杰,陈竹,田正波. 横Ⅱ型梁在风洞应变天平阻力结构上的应用[J]. 实验流体力学,2012,26(4):83-86. DOI: 10.3969/j.issn.1672-9897.2012.04.017

    SHI Y J,CHEN Z,TIAN Z B. The application of thwart Ⅱ beam to axial force structure of wind tunnel strain gauge balance[J]. Journal of Experiments in Fluid Mechanics,2012,26(4):83-86. doi: 10.3969/j.issn.1672-9897.2012.04.017
    [16]
    田正波,王超. 杆式应变天平弧形断开槽结构特性研究[J]. 机械工程师,2019(3):87-89.

    TIAN Z B,WANG C. Research on structural characteristics of strain gauge balance with curved groove[J]. Mechanical Engineer,2019(3):87-89.
    [17]
    贺德馨. 风洞天平[M]. 北京: 国防工业出版社, 2001: 80

    HE D X. Wind tunnel balance[M]. Beijing: National Defense Industry Press, 2001: 80.
    [18]
    中国人民解放军总装备部. 风洞应变天平规范GJB2244A-2011[S]. 北京: 总装备部军标出版发行部, 2011
  • Related Articles

    [1]KONG Xiaoping, CHEN Wei, LUO Shichao, LYU Minglei, QU Tao, WU Liyin. Study on calibration of effective test time in high enthalpy shock tunnel[J]. Journal of Experiments in Fluid Mechanics, 2025, 39(1): 1-7. DOI: 10.11729/syltlx20230087
    [2]YANG Yang, QIAN Fengxue, ZHANG Changfeng, LIU Zhiyong. Research on wind tunnel test technology of sonic boom measurement based on probe[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(6): 92-100. DOI: 10.11729/syltlx20210193
    [3]CHEN Aiguo, TIAN Ying, WANG Jie, YANG Yanguang, LI Zhihui, LI Zhonghua, LI Zhenqian. Measurement investigation of rotational temperature and vibrational temperature in hypersonic wind tunnel rarefied flow field[J]. Journal of Experiments in Fluid Mechanics. DOI: 10.11729/syltlx20210192
    [4]LI Qiang, WAN Bingbing, ZHUANG Yu, ZHAO Jinshan. Experimental study on influence of incoming total temperature on hypersonic boundary layer transition[J]. Journal of Experiments in Fluid Mechanics. DOI: 10.11729/syltlx20220081
    [5]ZHANG Ying, LIU Nan. Numerical simulation and experimental test of unsteady flow field for oscillating vanes gust generator in high-speed wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(5): 83-89. DOI: 10.11729/syltlx20210093
    [6]LAI Qingren, LIU Qinglin, GUO Long, ZHANG Pingtao, YI Xian. Icing and anti-icing test technology of aero-engine based on large-scale icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(3): 1-8. DOI: 10.11729/syltlx20200067
    [7]CAI Ming, GAO Limin, LIU Zhe, LI Haoxue, CHEN Shun. Cascade testing for a subsonic compressor linear cascade and its modification[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(2): 36-42. DOI: 10.11729/syltlx20200079
    [8]Fu Yang'aoxiao, Dong Weizhong, Ding Mingsong, Liu Qingzong, Gao Tiesuo, Jiang Tao. Numerical simulation of thermochemical non-equilibrium flow field in arc-jet tunnel[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 1-12. DOI: 10.11729/syltlx20180138
    [9]Luo Yue, Zhou Wei, Yang Hong, Chen Wei. CFD analysis of the arc heater turbulent flow field of flat plate testing[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(2): 86-92. DOI: 10.11729/syltlx20160088
    [10]Wu Jinhua, Sun Haisheng, Shen Zhihong, Jiang Yubiao. 旋转流场下的振荡动导数试验技术研究[J]. Journal of Experiments in Fluid Mechanics, 2014, (4): 54-58. DOI: 10.11729/syltlx20130057
  • Cited by

    Periodical cited type(2)

    1. 雒卫廷. 大展弦比复合材料机翼结构细节抗疲劳优化. 兵器装备工程学报. 2020(03): 164-168 .
    2. 苗磊,李建强,李耀华,何成军,张诣,徐志伟. 风洞天平静态校准与使用状态一致性研究. 中国测试. 2020(08): 158-164 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (494) PDF downloads (30) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close