Fu Cheng, Peng Qiang, Li Yi, Liao Daxiong, Lyu Jinlei, Zhu Bo. Experimental study of flow straightening and turbulence reduction characteristics for porosity honeycomb[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(5): 17-22. DOI: 10.11729/syltlx20150111
Citation: Fu Cheng, Peng Qiang, Li Yi, Liao Daxiong, Lyu Jinlei, Zhu Bo. Experimental study of flow straightening and turbulence reduction characteristics for porosity honeycomb[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(5): 17-22. DOI: 10.11729/syltlx20150111

Experimental study of flow straightening and turbulence reduction characteristics for porosity honeycomb

More Information
  • Received Date: August 31, 2015
  • Revised Date: November 10, 2015
  • The honeycomb is an important device which is installed in wind tunnel settling chamber to improve the flow uniformity and decrease the flow angle as well as the turbulence intensity in the wind tunnel test section. For a regular honeycomb, in order to improve the flow straightening and turbulence reduction characteristics, a large length-diameter ratio must be used in the design of the honeycomb which results in the increase of total pressure loss of the honeycomb. A new type of honeycomb with a group of small holes on the wall of honeycomb cells is designed. This type of porosity honeycomb can achieve the exchange of the vortices and pressure between different cells to significantly improve the flow quality downstream the honeycomb. In the solid wall test section of the 0.55m×0.40m low noise aeronautic acoustic wind tunnel, the 2D hot wire is used to measure the turbulence intensity and velocity distribution downstream the porosity honeycomb and the regular one respectively with different flow velocities. The experimental results indicate that the honeycomb with 50% transverse porosity can reduce the turbulence intensity by 13.8% compared against the regular one. The velocity distribution downstream the honeycomb becomes smoother and the flow angle is also reduced. The design of the flow straightening and turbulence reduction system for the wind tunnel with the optimized porosity honeycomb can reduce the number of screens or the constriction ratio of the wind tunnel, and therefore, reduce the power consumption and the construction budget of wind tunnels.
  • [1]
    张仲寅, 乔志德.粘性流体力学[M].北京:北京航空学院出版社, 1989.

    Zhang Z Y, Qiao Z D. Mechanics of viscous fluids[M]. Beijing:Beijing Aeronautics College Press, 1989.
    [2]
    刘政崇.高低速风洞气动与结构设计[M].北京:国防工业出版社, 2003.

    Liu Z C. The aerodynamic and structure design of high speed and low speed wind tunnel[M]. Beijing:National Defense Industry Press, 2003.
    [3]
    伍荣林, 王振羽.风洞设计原理[M].北京:北京航空学院出版社, 1985.

    Wu R L, Wang Z Y. Wind tunnel design principle[M]. Beijing:Beijing Aeronautics College Press, 1985.
    [4]
    Stanniland. Improvement of the flow quality in ARA transonic tunnel by means of a long cell honeycomb[R]. ARA-Memo-375, 1992.
    [5]
    Ahmad D Vakili. A new honeycomb for low isotropic turbulence[J]. AIAA-2003-3880, 2003.
    [6]
    李鹏, 汤更生, 余永生, 等.航空声学风洞的声学设计研究[J].实验流体力学, 2011, 25(3):82-86. http://www.syltlx.com/CN/abstract/abstract10664.shtml

    Li P, Tang G S, Yu Y S, et al. Research of acoustic design for aeroacoustic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(3):82-86. http://www.syltlx.com/CN/abstract/abstract10664.shtml
    [7]
    廖达雄, 陈吉明, 彭强, 等.连续式跨声速风洞设计关键技术[J].实验流体力学, 2011, 25(4):74-78. http://www.syltlx.com/CN/abstract/abstract10640.shtml

    Liao D X, Chen J M, Peng Q, et al. Key design techniques of the low noise continuous transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(4):74-78. http://www.syltlx.com/CN/abstract/abstract10640.shtml
    [8]
    廖达雄, 黄知龙, 陈振华, 等.大型低温高雷诺数风洞及其关键技术综述[J].实验流体力学, 2014, 28(2):1-6, 20. http://www.syltlx.com/CN/abstract/abstract10710.shtml

    Liao D X, Huang Z L, Cheng Z H, et al. Review on large-scale cryogenic wind tunnel and key technologies[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(2):1-6, 20. http://www.syltlx.com/CN/abstract/abstract10710.shtml
    [9]
    Grunnet J, Nelson D. The new FFA T1500 transonic wind tunnel initial operation, calibration and test result[C]. AIAA 16th Aerodynamic Ground Testing Conference, Seattle, 1990.
    [10]
    屈晓力, 余永生, 廖达雄, 等.声学引导风洞高效低噪声风扇设计[J].实验流体力学, 2013, 27(3):103-107, 112. http://www.syltlx.com/CN/abstract/abstract10442.shtml

    Qu X L, Yu Y S, Liao D X, et al. The design of the high-performance low-noise fan of the acoustic pilot wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(3):103-107, 112. http://www.syltlx.com/CN/abstract/abstract10442.shtml
    [11]
    Harald Q. Hot-wire measurements in cryogenic environment[R]. AIAA-2011-880, 2011.
    [12]
    Cukurel B, Acarer S, Arts T. A novel perspective to high-speed cross-hot-wire calibration methodology[J]. Experimental Fluids, 2012, 53(4):1073-1085. DOI: 10.1007/s00348-012-1344-y
  • Related Articles

    [1]ZHU Chang, XU Guoliang, ZHANG Chengjian, Yang Yifan, WU Jie. Experimental investigation of crossflow instability upon a 6 degree hypersonic sharp cone model with rough surface[J]. Journal of Experiments in Fluid Mechanics. DOI: 10.11729/syltlx20240011
    [2]GAO Nan, LIU Xuanhe. A preliminary study on calibration-free hot-wire anemometry method[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(5): 1-8. DOI: 10.11729/syltlx20230004
    [3]ZHU Bo, CHEN Jiming, WU Wei, PEI Haitao. Experimental investigation of turbulence intensity measurement in continuous transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics. DOI: 10.11729/syltlx20220034
    [4]Fu Cheng, Zhao Bo, Xu Dachuan, Liao Daxiong, Pei Haitao, Zhu Bo, Qin Honggang. Investigation on flow turbulent characteristics of plate-fin and tube-fin heat exchanger[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(6): 22-27. DOI: 10.11729/syltlx20190036
    [5]Yu Tao, Wang Junpeng, Liu Xianghong, Zhao Jiaquan, Wu Jie. Measurements and data processing technology of freestream fluctuations in hypersonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(5): 49-56. DOI: 10.11729/syltlx20180142
    [6]Ma Husheng, Liu Huilong, Qin Tianchao, Du Wei, Shi Peijie, Ren Siyuan. Development of hot-wire probe calibration wind tunnel based on compressible fluid[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(1): 93-99. DOI: 10.11729/syltlx20160108
    [7]Zhu Bo, Peng Qiang, Tang Gengsheng. Digital signal process of low turbulence intensity based on EMD[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(5): 74-79. DOI: 10.11729/syltlx20150148
    [8]Wang Xin, Yang Ying, Ma Yunchi, Ma Weiwei. Research on synchronous measurement of temperature and velocity in melt-blowing flow field based on hot-wire anemometer[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(1): 91-96. DOI: 10.11729/syltlx20150068
    [9]LUN Li-yong, CHEN Hou-lei, CAI Jing-hui. Investigation on calibration method of hot-wire anemometer in high pressure reciprocating flow[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(3): 87-91. DOI: 10.3969/j.issn.1672-9897.2010.03.018
    [10]SHENG Sen-zhi, ZHUANG Yong-ji, LIU Zong-yan. A new type of hot-wire/film anemometer[J]. Journal of Experiments in Fluid Mechanics, 2009, 23(1): 89-93. DOI: 10.3969/j.issn.1672-9897.2009.01.020
  • Cited by

    Periodical cited type(3)

    1. 宋光韬,葛建辉,马钊,王恒,吕郑,徐惊雷. 并联TBCC排气系统稳态与模态转换实验研究. 推进技术. 2024(04): 51-61 .
    2. 赵春梅,王恒,王俊,钟世林,蒲永彬,任亚强. 涡轮冲压组合喷管运动机构布局研究综述. 航空发动机. 2024(06): 13-18 .
    3. 彭波,徐惊雷. 并联TBCC排气系统模态转换过程动态特性研究. 机械制造与自动化. 2022(05): 194-198 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (731) PDF downloads (127) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close