Citation: | CAI Y Q, YANG X L, WANG K X, et al. Experimental study on the effect of two-stage radial spacing on flow field and atomization in LDI staged combustor[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(6): 15-24. DOI: 10.11729/syltlx20220082 |
[1] |
LEFEBVRE A H, BALLAL D R. Gas turbine combustion: alternative fuels and emissions[M]. 3rd ed. Boca Raton: Taylor & Francis, 2010. doi: 10.1201/9781420086058
|
[2] |
ANACLETO P, HEITOR M V, MOREIRA A N. The mean and turbulent flowfields in a model RQL gas-turbine combustor[J]. Experiments in Fluids, 1996, 22(2): 153–164. doi: 10.1007/s003480050033
|
[3] |
SCHWEITZER J K, ANDERSON J S, SCHEUGENPFLUG H, et al. Validation of propulsion technologies and new engine concepts in a joint technology demonstrator program[R]. Paper ICAS 2006-8.10.1, 2005.
|
[4] |
MCKINNEY R, CHEUNG A, SOWA W, et al. The Pratt & Whitney TALON X low emissions combustor: revolutionary results with evolutionary technology[C]//Proc of the 45th AIAA Aerospace Sciences Meeting and Exhibit. 2007: 386. doi: 10.2514/6.2007-386
|
[5] |
MONGIA H. Engineering aspects of complex gas turbine combustion mixers part Ⅳ: swirl cup[C]//Proc of the 9th Annual International Energy Conversion Engineering Conference. 2011: 5526. doi: 10.2514/6.2011-5526
|
[6] |
YANG Z, BREISACHER K, OYEDIRAN A. Combustion-acoustic instability analysis of LPP combustor. Ⅱ- Longitudinal modes[C]//Proc of the 38th Aerospace Sciences Meeting and Exhibit. 2000: 713. doi: 10.2514/6.2000-713
|
[7] |
GUIN C. Characterisation of autoignition and flashback in premixed injection systems[C]//RTO Meeting proceedings. 1999.
|
[8] |
DHANUKA S K, TEMME J E, DRISCOLL J F, et al. Vortex-shedding and mixing layer effects on periodic flashback in a lean premixed prevaporized gas turbine combustor[J]. Proceedings of the Combustion Institute, 2009, 32(2): 2901–2908. doi: 10.1016/j.proci.2008.06.155
|
[9] |
金如山, 索建秦. 先进燃气轮机燃烧室[M]. 北京: 航空工业出版社, 2016.
|
[10] |
CORREA S M. A review of NOx Formation under gas-turbine combustion conditions[J]. Combustion Science and Technology, 1993, 87(1-6): 329–362. doi: 10.1080/00102209208947221
|
[11] |
FU Y. Aerodynamics and combustion of axial swirlers[D]. Cincinnati: University of Cincinnati, 2008.
|
[12] |
TACINA R. Combustor technology for future aircraft[C]//Proc of the 26th Joint Propulsion Conference. 1990: 2400. doi: 10.2514/6.1990-2400
|
[13] |
LAZIK W, DOERR T, BAKE S, et al. Development of lean-burn low-NOx combustion technology at rolls-Royce Deutschland[C]//Proceedings of ASME Turbo Expo 2008: Power for Land, Sea, and Air. 2009: 797−807. doi: 10.1115/GT2008-51115
|
[14] |
王于蓝, 范雄杰, 高伟, 等. 航空发动机燃烧室光学可视模型试验件及其流场测量研究进展[J]. 实验流体力学, 2021, 35(1): 18–33. DOI: 10.11729/syltlx20190171
WANG Y L, FAN X J, GAO W, et al. Development of optically accessible gas turbine model combustor and its flow field testing[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(1): 18–33. doi: 10.11729/syltlx20190171
|
[15] |
HEATH C M. Characterization of swirl-venturi lean direct injection designs for aviation gas turbine combustion[J]. Journal of Propulsion and Power, 2014, 30(5): 1334–1356. doi: 10.2514/1.B35077
|
[16] |
KıRTAS M, PATEL N, SANKARAN V, et al. Large-eddy simulation of a swirl-stabilized, lean direct injection spray combustor[C]//Proceedings of ASME Turbo Expo 2006: Power for Land, Sea, and Air. 2008: 903-914. doi: 10.1115/GT2006-91310
|
[17] |
PATEL N, KIRTAŞ M, SANKARAN V, et al. Simulation of spray combustion in a lean-direct injection combustor[J]. Proceedings of the Combustion Institute, 2007, 31(2): 2327–2334. doi: 10.1016/j.proci.2006.07.232
|
[18] |
FU Y Q, JENG S M, TACINA R. Characteristics of the swirling flow in a multipoint LDI combustor[C]//Proc of the 45th AIAA Aerospace Sciences Meeting and Exhibit. 2007: 846. doi: 10.2514/6.2007-846
|
[19] |
李乐, 索建秦, 于涵, 等. 中心分级多点直喷燃烧室冷态流动特性研究[J]. 推进技术, 2021, 42(6): 1339–1350.
LI L, SUO J Q, YU H, et al. Non-reaction flow characteristic of concentric staged multi-point direct injection combustor[J]. Journal of Propulsion Technology, 2021, 42(6): 1339–1350.
|
[20] |
于涵, 索建秦, 朱鹏飞, 等. 中心分级贫油直喷(LDI)燃烧室流动及污染排放特性研究[J]. 西北工业大学学报, 2018, 36(5): 816–823. DOI: 10.3969/j.issn.1000-2758.2018.05.002
YU H, SUO J Q, ZHU P F, et al. The characteristic of flow field and emissions of a concentric staged lean direct injection (LDI) combustor[J]. Journal of Northwestern Polytechnical University, 2018, 36(5): 816–823. doi: 10.3969/j.issn.1000-2758.2018.05.002
|
[21] |
曾青华, 孔文俊, 艾育华, 等. 旋流器结构对贫油直喷燃烧室的性能影响[J]. 航空动力学报, 2014, 29(8): 1775–1781. DOI: 10.13224/j.cnki.jasp.2014.08.003
ZENG Q H, KONG W J, AI Y H, et al. Effects of swirler structure on the performance of lean-direct-injection combustor[J]. Journal of Aerospace Power, 2014, 29(8): 1775–1781. doi: 10.13224/j.cnki.jasp.2014.08.003
|
[22] |
张群, 徐华胜, 钟华贵, 等. 多旋流器阵列贫油直喷燃烧室流场的数值模拟[J]. 航空动力学报, 2009, 24(3): 483–487. DOI: 10.13224/j.cnki.jasp.2009.03.021
ZHANG Q, XU H S, ZHONG H G, et al. Numerical simulation of flowfield in a multi-swirler array lean direct injection combustor[J]. Journal of Aerospace Power, 2009, 24(3): 483–487. doi: 10.13224/j.cnki.jasp.2009.03.021
|
[23] |
郑洪涛, 唐胜, 刘晓杰. 几何结构对贫油直喷燃烧室流场特性影响的研究[J]. 热科学与技术, 2017, 16(6): 497–502. DOI: 10.13738/j.issn.1671-8097.2017.06.011
ZHENG H T, TANG S, LIU X J. Effect of geometry on flow field characteristics of lean direct injection combustor[J]. Journal of Thermal Science and Technology, 2017, 16(6): 497–502. doi: 10.13738/j.issn.1671-8097.2017.06.011
|
[24] |
郑顺, 王成军, 里海洋, 等. 掺混孔位置对中心分级燃烧室性能影响的数值模拟[J]. 邵阳学院学报(自然科学版), 2021, 18(1): 51–59. DOI: 10.3969/j.issn.1672-7010.2021.01.007
ZHENG S, WANG C J, LI H Y, et al. Numerical simulation of effect of mixing hole location on performance of a central staged combustor[J]. Journal of Shaoyang University (Natural Science Edition), 2021, 18(1): 51–59. doi: 10.3969/j.issn.1672-7010.2021.01.007
|
[25] |
里海洋, 王成军, 于建桥, 等. 掺混孔排列方式对中心分级燃烧室性能的影响[J]. 滨州学院学报, 2021, 37(4): 5–11. DOI: 10.13486/j.cnki.1673-2618.2021.04.001
LI H Y, WANG C J, YU J Q, et al. Influence of mixing hole arrangement on performance of central staged combustion chamber[J]. Journal of Binzhou University, 2021, 37(4): 5–11. doi: 10.13486/j.cnki.1673-2618.2021.04.001
|
[26] |
刘日超, 乐嘉陵, 陈柳君, 等. 双旋流燃烧室两相喷雾试验和数值研究[J]. 实验流体力学, 2017, 31(5): 24–31. DOI: 10.11729/syltlx20170093
LIU R C, LE J L, CHEN L J, et al. Experimental and numerical study on spray atomization in a double-swirler combustor[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(5): 24–31. doi: 10.11729/syltlx20170093
|
[27] |
樊艳娜, 毕明树, 周一卉, 等. 旋流作用下突扩燃烧室内冷态流场的 PIV 分析[J]. 实验流体力学, 2015, 29(6): 21–27. DOI: 10.11729/syltlx20150056
FAN Y N, BI M S, ZHOU Y H, et al. Cold-flow analysis on swirl-stabilized dump combustor by PIV[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(6): 21–27. doi: 10.11729/syltlx20150056
|
[28] |
童秉纲, 孔祥言, 邓国华. 气体动力学[M]. 2版. 北京: 高等教育出版社, 2012.
TONG B G, KONG X Y, DENG G H. Gas dynamics[M]. 2nd ed. Beijing: Higher Education Press, 2012.
|
[29] |
林宇震, 许全宏, 刘高恩. 燃气轮机燃烧室[M]. 北京: 国防工业出版社, 2008.
LIN Y Z, XU Q H, LIU G E. Cas turbine combustor[M]. Beijing: National Defense Industry Press, 2008.
|
[1] | ZHANG Ruimin, CAI Haoting, ZHAO Yugang. Research progress of icing on droplet impinging[J]. Journal of Experiments in Fluid Mechanics. DOI: 10.11729/syltlx20240020 |
[2] | LIANG Dingxin, XUE Chundong, ZENG Xiao, QIN Kairong. Experimental study on generation of non-Newtonian droplets in dripping mode in a flow focusing microchannel[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(2): 36-45. DOI: 10.11729/syltlx20210184 |
[3] | WANG Xiang, PANG Yan, SHEN Feng, LIU Zhaomiao. Study on behaviors of droplets and particles within microchannels[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(2): 25-38. DOI: 10.11729/syltlx20190137 |
[4] | Gao Wei, Zhang Chi, He Chunlong, Lin Yuzhen. Progress on spray autoignition under the extreme conditions in aero-engines[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(1): 29-40. DOI: 10.11729/syltlx20180120 |
[5] | Guo Long, Cheng Yao, Wang Zixu. Experimental study on droplet size measurement and control of icing cloud in icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(2): 55-60. DOI: 10.11729/syltlx20170096 |
[6] | Li Shucheng, Luo Qiang, Chen Dan, Huang Weikai. Research on control method of spraying system in the icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(6): 93-99. DOI: 10.11729/syltlx20160036 |
[7] | Fu Cheng, Song Wenping, Peng Qiang, Liao Daxiong, Wang Chao. An overview of supercooled large droplets icing condition simulation capability in icing wind tunnels[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(4): 1-7. DOI: 10.11729/syltlx20160118 |
[8] | GUO Zhi-hui, XU Hao, MAO Xiao-fang. Investigation on spray characteristics of bi-centrifugal swirl injector[J]. Journal of Experiments in Fluid Mechanics, 2009, 23(4): 51-55. DOI: 10.3969/j.issn.1672-9897.2009.04.010 |
[9] | Using shock tube to drive water spray[J]. Journal of Experiments in Fluid Mechanics, 2002, 16(4): 13-17. DOI: 10.3969/j.issn.1672-9897.2002.04.003 |
[10] | Investigation of kerosene spray atomization in supersonic flow[J]. Journal of Experiments in Fluid Mechanics, 2001, 15(4): 12-14. DOI: 10.3969/j.issn.1672-9897.2001.04.003 |