Citation: | Fu Cheng, Song Wenping, Peng Qiang, Liao Daxiong, Wang Chao. An overview of supercooled large droplets icing condition simulation capability in icing wind tunnels[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(4): 1-7. DOI: 10.11729/syltlx20160118 |
[1] |
Cober S G, Isaac G A, Strapp J W. Characterizations of aircraft icing environments that include supercooled large drops[J]. Journal of Applied Meteorology, 2001, 40:1984-2002. DOI: 10.1175/1520-0450(2001)040<1984:COAIET>2.0.CO;2
|
[2] |
Stewart C, Ben B, Richard J. Data and analysis for the development of an engineering standard for supercooled large drop conditions[R]. DOT/FAA/AR-09/10.
|
[3] |
Bragg M B. Aircraft aerodynamic effects due to large-droplet ice accretions[R]. AIAA-96-0932, 1996.
|
[4] |
Miller D, Addy H, Ide R. A study of large droplet ice accretions in the NASA Lewis IRT at near freezing conditions[R]. AIAA-96-0934, 1996.
|
[5] |
CFR 14, Part 25, Appendix C. Atmospheric icing conditions[S].
|
[6] |
CFR 14, Part 25, Appendix O. Supercooled large drop icing conditions[S].
|
[7] |
Leone G, Vecchione L. The new CIRA icing wind tunnel spray bar system development[R]. AIAA-2000-0629, 2000.
|
[8] |
Ludovico V. An overview of the CIRA icing wind tunnel[R]. AIAA-2003-900, 2003.
|
[9] |
Thomas B I, John R O. New icing cloud simulation system at the NASA Glenn research center icing research tunnel[R]. AIAA-98-0143, 1998.
|
[10] |
符澄, 彭强, 张海洋, 等.结冰风洞喷嘴雾化特性研究[J].实验流体力学, 2015, 29(2):32-36. http://www.syltlx.com/CN/abstract/abstract10823.shtml
Fu C, Peng Q, Zhang H Y, et al. The atomization characteristics research for spray nozzle of icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(2):32-36. http://www.syltlx.com/CN/abstract/abstract10823.shtml
|
[11] |
符澄, 彭强, 张海洋, 等.结冰风洞环境对喷嘴雾化特性的影响初步研究[J].实验流体力学, 2015, 29(3):30-34. http://www.syltlx.com/CN/abstract/abstract10840.shtml
Fu C, Peng Q, Zhang H Y, et al. Preliminary research on spray nozzle atomization characteristics in icing wind tunnel environment[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(3):30-34. http://www.syltlx.com/CN/abstract/abstract10840.shtml
|
[12] |
Mark P. SLD research at NASA:basic research[R]. NASA Report 20150007676.
|
[13] |
William B W. Comparison of LEWICE and GlennICE in the SLD Regime[R]. AIAA-2008-0439, 2008.
|
[14] |
Colin B. Icing simulation[R]. NASA/CP-2009-215797.
|
[15] |
Robert F I. Icing cloud calibration of the NASA Glenn icing research tunnel[R]. AIAA-2001-0234, 2001.
|
[16] |
Robert F I. 2006 icing cloud calibration of the NASA Glenn icing research tunnel[R]. NASA/TM-208-215177.
|
[17] |
Van Zante J F, Ide R F, Steen L E. NASA Glenn icing research tunnel:2014 cloud calibration procedure and results[R]. NASA/TM-2014-218392.
|
[18] |
Van Zante J F, Ide R F, Steen L E. NASA Glenn icing research tunnel:2014-2015 cloud calibration procedure and results[R]. NASA/TM-2015-218758.
|
[19] |
Biagio M E. SLD calibration at CIRA icing wind tunnel cloud generation & measurements[R]. CIRA Report, 2012.
|
[20] |
David M O, Catherine C. Development of a supercooled large droplet environment within the NRC altitude icing wind tunnel[R]. SAE Technical Paper 2015-01-2092.
|
[21] |
Eddie I. Calibration and recent upgrades to the Cox icing wind tunnel[R]. AIAA-2008-437, 2008.
|
[22] |
Edward H. Goodrich icing wind tunnel overview, improvements and capabilities[R]. AIAA-2006-862, 2006.
|
[23] |
战培国.结冰风洞研究综述[J].实验流体力学, 2007, 21(3):92-96. http://www.syltlx.com/CN/abstract/abstract9577.shtml
Zhan P G. A review of icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(3):92-96. http://www.syltlx.com/CN/abstract/abstract9577.shtml
|
[24] |
Arne B. Implementation of an innovative ice crystal generation system to the icing wind tunnel Braunschweig[R]. AIAA-2015-1225, 2015.
|
[25] |
易贤, 马洪林, 王开春, 等.结冰风洞液滴运动及传质传热特性分析[J].四川大学学报(工程科学版), 2012, 44(sup. 2):132-135. http://www.cnki.com.cn/Article/CJFDTOTAL-SCLH2012S2033.htm
Yi X, Ma H L, Wang K C, et al. Analysis of water droplets Movement and heat/mass transfer in an icing wind tunnel[J]. Journal of Sichuan University (Engineering Science Edition), 2012, 44(sup.2):132-135. http://www.cnki.com.cn/Article/CJFDTOTAL-SCLH2012S2033.htm
|
[1] | CHEN Zhenhua, LIU Zongzheng, CHEN Jiming, GUO Shouchun, YAN Xiqiang, PEI Haitao. Characteristics and key technology analysis of large continuous transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(1): 62-68. DOI: 10.11729/syltlx20210092 |
[2] | CHEN Jianbing, LIU Bolin, CHEN Wanhua, LIAO Daxiong, LAI Huan. Key technology for model access system in cryogenic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(1): 37-43. DOI: 10.11729/syltlx20210140 |
[3] | LAI Huan, ZHU Changjiang, CHEN Wanhua, LIAO Daxiong, SUN Dewen. Key technology for mechanical design in large-scale cryogenic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(1): 19-26. DOI: 10.11729/syltlx20210040 |
[4] | CHEN Shuyue, GUO Xiangdong, WANG Zixu, LIU senyun, WU Yingchun. Preliminary research on size measurement of supercooled large droplet in icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(3): 22-29. DOI: 10.11729/syltlx20200104 |
[5] | Qiao Wenyou, Yu Anyuan. Overview on integrated design of inward-turning inlet with aircraft forebody[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 43-59. DOI: 10.11729/syltlx20190028 |
[6] | Ding Feng, Liu Jun, Shen Chibing, Liu Zhen, Chen Shaohua, Huang Wei. An overview of waverider design concept in airframe-inlet integration methodology for air-breathing hypersonic vehicles[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6): 16-26. DOI: 10.11729/syltlx20180080 |
[7] | Zhang Hong, Zhang Wenqian, Zheng Ying. Research progress on supercooled large droplet icing detection technology[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(3): 33-39. DOI: 10.11729/syltlx20160037 |
[8] | Liao Dongjun, Liu Sen, Jian Hexiang, Huang Jie. Review of research on shock standoff distance for hypersonic sphere[J]. Journal of Experiments in Fluid Mechanics, 2015, (6): 1-7,27. DOI: 10.11729/syltlx20150053 |
[10] | LIAO Da-xiong, CHEN Ji-ming, PENG Qiang, LIU Xin-min. Key design techniques of the low noise continuous transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(4): 74-78. DOI: 10.3969/j.issn.1672-9897.2011.04.014 |
1. |
孔维梁,钟鑫宇,韩涵,刘洪. 过冷大水滴双峰分布特性影响冰形机制的数值模拟研究. 气动研究与试验. 2025(01): 24-35 .
![]() | |
2. |
陈海,郭向东,赵荣,易贤. 基于自研喷嘴的冻雨结冰云雾条件试验匹配方法. 气动研究与试验. 2025(02): 75-81 .
![]() | |
3. |
桑旭,金哲岩,杨志刚,余放. 水滴在气流中变形破碎过程的数值模拟研究. 上海交通大学学报. 2024(04): 419-427 .
![]() | |
4. |
刘翔,刘文淇,赵梁,汝佳兴,卫洪森,张爱聆. 机翼结冰特性及复杂流场分析研究进展. 航空工程进展. 2024(04): 130-142 .
![]() | |
5. |
王利平,王福新,刘洪. 过冷大水滴环境粒径分布模拟方法研究进展. 航空学报. 2024(S1): 6-25 .
![]() | |
6. |
陈勇,孔维梁,刘洪. 飞机过冷大水滴结冰气象条件运行设计挑战. 航空学报. 2023(01): 7-21 .
![]() | |
7. |
李斯,束珺,张志强,顾洪宇. 冰风洞过冷大水滴云雾水滴质量分布模拟. 南京航空航天大学学报. 2023(01): 146-153 .
![]() | |
8. |
陈海,郭向东,赵荣,易贤,王丹. 冻细雨分布匹配的量化评估方法. 南京航空航天大学学报. 2023(02): 233-240 .
![]() | |
9. |
陈方备,戴铮,崔燚,吴健. 有限空间竖直壁面的结冰特性. 航空学报. 2023(S2): 274-284 .
![]() | |
10. |
马金博,付冬梅,王高远,郝莲,王丹. 待机状态下机翼结冰的快速计算方法. 民用飞机设计与研究. 2022(02): 67-75 .
![]() | |
11. |
韩涵,李姚,印子斐,孔维梁,刘洪. 过冷大水滴粒径分布的欧拉-拉格朗日混合抽样算法及对冰型影响. 科学技术与工程. 2022(20): 8960-8971 .
![]() | |
12. |
陈舒越,郭向东,王梓旭,刘森云,吴迎春. 结冰风洞过冷大水滴粒径测量初步研究. 实验流体力学. 2021(03): 22-29 .
![]() | |
13. |
施红,王均毅,陈佳敏,丁媛媛,张彤. 过冷大水滴条件下结冰相似准则. 航空动力学报. 2019(05): 1101-1110 .
![]() |