Fu Cheng, Song Wenping, Peng Qiang, Liao Daxiong, Wang Chao. An overview of supercooled large droplets icing condition simulation capability in icing wind tunnels[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(4): 1-7. DOI: 10.11729/syltlx20160118
Citation: Fu Cheng, Song Wenping, Peng Qiang, Liao Daxiong, Wang Chao. An overview of supercooled large droplets icing condition simulation capability in icing wind tunnels[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(4): 1-7. DOI: 10.11729/syltlx20160118

An overview of supercooled large droplets icing condition simulation capability in icing wind tunnels

More Information
  • Received Date: July 26, 2016
  • Revised Date: October 08, 2016
  • The icing wind tunnel is the most important ground facility in the research of ice accretion tests and the ice anti/protection devices design of airplanes. With the increasing importance of the supercooled large droplets ice accretions on the airplane surface and the development of the SLD airworthiness, the SLD icing condition simulation capability need to be developed in the icing wind tunnel. This paper presents the analysis results of the SLD icing condition in CFR14-25 Appendix O and the requirements of the SLD condition simulation in the icing wind tunnel. The developing status and the key problems of SLD icing condition simulation capabilities in several icing wind tunnels, such as IRT and CIRA-IWT are also presented. The three main key problems in the development of the SLD icing condition capability in the icing wind tunnel are the generation of large water droplets and it's turbulent mixing characteristics with the cloud in wind tunnel, the supercool process of large drops and the drop spectra accurate measurement in wide bands. The development roadmap and the key technology solution method of SLD icing condition simulation capability of icing wind tunnel of CARDC are presented in the end of this paper.
  • [1]
    Cober S G, Isaac G A, Strapp J W. Characterizations of aircraft icing environments that include supercooled large drops[J]. Journal of Applied Meteorology, 2001, 40:1984-2002. DOI: 10.1175/1520-0450(2001)040<1984:COAIET>2.0.CO;2
    [2]
    Stewart C, Ben B, Richard J. Data and analysis for the development of an engineering standard for supercooled large drop conditions[R]. DOT/FAA/AR-09/10.
    [3]
    Bragg M B. Aircraft aerodynamic effects due to large-droplet ice accretions[R]. AIAA-96-0932, 1996.
    [4]
    Miller D, Addy H, Ide R. A study of large droplet ice accretions in the NASA Lewis IRT at near freezing conditions[R]. AIAA-96-0934, 1996.
    [5]
    CFR 14, Part 25, Appendix C. Atmospheric icing conditions[S].
    [6]
    CFR 14, Part 25, Appendix O. Supercooled large drop icing conditions[S].
    [7]
    Leone G, Vecchione L. The new CIRA icing wind tunnel spray bar system development[R]. AIAA-2000-0629, 2000.
    [8]
    Ludovico V. An overview of the CIRA icing wind tunnel[R]. AIAA-2003-900, 2003.
    [9]
    Thomas B I, John R O. New icing cloud simulation system at the NASA Glenn research center icing research tunnel[R]. AIAA-98-0143, 1998.
    [10]
    符澄, 彭强, 张海洋, 等.结冰风洞喷嘴雾化特性研究[J].实验流体力学, 2015, 29(2):32-36. http://www.syltlx.com/CN/abstract/abstract10823.shtml

    Fu C, Peng Q, Zhang H Y, et al. The atomization characteristics research for spray nozzle of icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(2):32-36. http://www.syltlx.com/CN/abstract/abstract10823.shtml
    [11]
    符澄, 彭强, 张海洋, 等.结冰风洞环境对喷嘴雾化特性的影响初步研究[J].实验流体力学, 2015, 29(3):30-34. http://www.syltlx.com/CN/abstract/abstract10840.shtml

    Fu C, Peng Q, Zhang H Y, et al. Preliminary research on spray nozzle atomization characteristics in icing wind tunnel environment[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(3):30-34. http://www.syltlx.com/CN/abstract/abstract10840.shtml
    [12]
    Mark P. SLD research at NASA:basic research[R]. NASA Report 20150007676.
    [13]
    William B W. Comparison of LEWICE and GlennICE in the SLD Regime[R]. AIAA-2008-0439, 2008.
    [14]
    Colin B. Icing simulation[R]. NASA/CP-2009-215797.
    [15]
    Robert F I. Icing cloud calibration of the NASA Glenn icing research tunnel[R]. AIAA-2001-0234, 2001.
    [16]
    Robert F I. 2006 icing cloud calibration of the NASA Glenn icing research tunnel[R]. NASA/TM-208-215177.
    [17]
    Van Zante J F, Ide R F, Steen L E. NASA Glenn icing research tunnel:2014 cloud calibration procedure and results[R]. NASA/TM-2014-218392.
    [18]
    Van Zante J F, Ide R F, Steen L E. NASA Glenn icing research tunnel:2014-2015 cloud calibration procedure and results[R]. NASA/TM-2015-218758.
    [19]
    Biagio M E. SLD calibration at CIRA icing wind tunnel cloud generation & measurements[R]. CIRA Report, 2012.
    [20]
    David M O, Catherine C. Development of a supercooled large droplet environment within the NRC altitude icing wind tunnel[R]. SAE Technical Paper 2015-01-2092.
    [21]
    Eddie I. Calibration and recent upgrades to the Cox icing wind tunnel[R]. AIAA-2008-437, 2008.
    [22]
    Edward H. Goodrich icing wind tunnel overview, improvements and capabilities[R]. AIAA-2006-862, 2006.
    [23]
    战培国.结冰风洞研究综述[J].实验流体力学, 2007, 21(3):92-96. http://www.syltlx.com/CN/abstract/abstract9577.shtml

    Zhan P G. A review of icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2007, 21(3):92-96. http://www.syltlx.com/CN/abstract/abstract9577.shtml
    [24]
    Arne B. Implementation of an innovative ice crystal generation system to the icing wind tunnel Braunschweig[R]. AIAA-2015-1225, 2015.
    [25]
    易贤, 马洪林, 王开春, 等.结冰风洞液滴运动及传质传热特性分析[J].四川大学学报(工程科学版), 2012, 44(sup. 2):132-135. http://www.cnki.com.cn/Article/CJFDTOTAL-SCLH2012S2033.htm

    Yi X, Ma H L, Wang K C, et al. Analysis of water droplets Movement and heat/mass transfer in an icing wind tunnel[J]. Journal of Sichuan University (Engineering Science Edition), 2012, 44(sup.2):132-135. http://www.cnki.com.cn/Article/CJFDTOTAL-SCLH2012S2033.htm
  • Related Articles

    [1]CHEN Zhenhua, LIU Zongzheng, CHEN Jiming, GUO Shouchun, YAN Xiqiang, PEI Haitao. Characteristics and key technology analysis of large continuous transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(1): 62-68. DOI: 10.11729/syltlx20210092
    [2]CHEN Jianbing, LIU Bolin, CHEN Wanhua, LIAO Daxiong, LAI Huan. Key technology for model access system in cryogenic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(1): 37-43. DOI: 10.11729/syltlx20210140
    [3]LAI Huan, ZHU Changjiang, CHEN Wanhua, LIAO Daxiong, SUN Dewen. Key technology for mechanical design in large-scale cryogenic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2022, 36(1): 19-26. DOI: 10.11729/syltlx20210040
    [4]CHEN Shuyue, GUO Xiangdong, WANG Zixu, LIU senyun, WU Yingchun. Preliminary research on size measurement of supercooled large droplet in icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(3): 22-29. DOI: 10.11729/syltlx20200104
    [5]Qiao Wenyou, Yu Anyuan. Overview on integrated design of inward-turning inlet with aircraft forebody[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 43-59. DOI: 10.11729/syltlx20190028
    [6]Ding Feng, Liu Jun, Shen Chibing, Liu Zhen, Chen Shaohua, Huang Wei. An overview of waverider design concept in airframe-inlet integration methodology for air-breathing hypersonic vehicles[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6): 16-26. DOI: 10.11729/syltlx20180080
    [7]Zhang Hong, Zhang Wenqian, Zheng Ying. Research progress on supercooled large droplet icing detection technology[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(3): 33-39. DOI: 10.11729/syltlx20160037
    [8]Liao Dongjun, Liu Sen, Jian Hexiang, Huang Jie. Review of research on shock standoff distance for hypersonic sphere[J]. Journal of Experiments in Fluid Mechanics, 2015, (6): 1-7,27. DOI: 10.11729/syltlx20150053
    [10]LIAO Da-xiong, CHEN Ji-ming, PENG Qiang, LIU Xin-min. Key design techniques of the low noise continuous transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2011, 25(4): 74-78. DOI: 10.3969/j.issn.1672-9897.2011.04.014
  • Cited by

    Periodical cited type(13)

    1. 孔维梁,钟鑫宇,韩涵,刘洪. 过冷大水滴双峰分布特性影响冰形机制的数值模拟研究. 气动研究与试验. 2025(01): 24-35 .
    2. 陈海,郭向东,赵荣,易贤. 基于自研喷嘴的冻雨结冰云雾条件试验匹配方法. 气动研究与试验. 2025(02): 75-81 .
    3. 桑旭,金哲岩,杨志刚,余放. 水滴在气流中变形破碎过程的数值模拟研究. 上海交通大学学报. 2024(04): 419-427 .
    4. 刘翔,刘文淇,赵梁,汝佳兴,卫洪森,张爱聆. 机翼结冰特性及复杂流场分析研究进展. 航空工程进展. 2024(04): 130-142 .
    5. 王利平,王福新,刘洪. 过冷大水滴环境粒径分布模拟方法研究进展. 航空学报. 2024(S1): 6-25 .
    6. 陈勇,孔维梁,刘洪. 飞机过冷大水滴结冰气象条件运行设计挑战. 航空学报. 2023(01): 7-21 .
    7. 李斯,束珺,张志强,顾洪宇. 冰风洞过冷大水滴云雾水滴质量分布模拟. 南京航空航天大学学报. 2023(01): 146-153 .
    8. 陈海,郭向东,赵荣,易贤,王丹. 冻细雨分布匹配的量化评估方法. 南京航空航天大学学报. 2023(02): 233-240 .
    9. 陈方备,戴铮,崔燚,吴健. 有限空间竖直壁面的结冰特性. 航空学报. 2023(S2): 274-284 .
    10. 马金博,付冬梅,王高远,郝莲,王丹. 待机状态下机翼结冰的快速计算方法. 民用飞机设计与研究. 2022(02): 67-75 .
    11. 韩涵,李姚,印子斐,孔维梁,刘洪. 过冷大水滴粒径分布的欧拉-拉格朗日混合抽样算法及对冰型影响. 科学技术与工程. 2022(20): 8960-8971 .
    12. 陈舒越,郭向东,王梓旭,刘森云,吴迎春. 结冰风洞过冷大水滴粒径测量初步研究. 实验流体力学. 2021(03): 22-29 . 本站查看
    13. 施红,王均毅,陈佳敏,丁媛媛,张彤. 过冷大水滴条件下结冰相似准则. 航空动力学报. 2019(05): 1101-1110 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (532) PDF downloads (85) Cited by(17)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close