Citation: | Gao Wei, Zhang Chi, He Chunlong, Lin Yuzhen. Progress on spray autoignition under the extreme conditions in aero-engines[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(1): 29-40. DOI: 10.11729/syltlx20180120 |
[1] |
Lefebvre A, Balla D R, Bahr D W. Gas turbine combustion:alternative fuels and emissions[M]. Boca Raton, FL:CRC Press, 2010.
|
[2] |
林宇震, 许全宏, 刘高恩.燃气轮机燃烧室[M].北京:国防工业出版社, 2008.
Lin Y Z, Xu Q H, Liu G E. Gas turbine combustor[M]. Beijing:National Defense Industry Press, 2008.
|
[3] |
International Civil Aviation Organization. ICAO environmental report 2010: aviation and climate change[S]. Montreal: ICAO Environment Branch, 2010.
|
[4] |
张驰, 林宇震, 徐华胜, 等.民用航空发动机低排放燃烧室技术发展现状及水平[J].航空学报, 2014, 35(2):332-350. http://d.old.wanfangdata.com.cn/Periodical/hkxb201402004
Zhang C, Lin Y Z, Xu H S, et al. Development status and level of low emissions combustor technologies for civil aero-engine[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2):332-350. http://d.old.wanfangdata.com.cn/Periodical/hkxb201402004
|
[5] |
Imamura A, Yoshida M, Kawano M, et al. Research and development of a LPP combustor with swirling flow for low NOx[R]. AIAA-2001-3311, 2001.
|
[6] |
Gokulakrishnan P, Ramotowski M J, Gaines G, et al. Experimental study of NOx formation in lean, premixed, prevapo-rized combustion of fuel oils at elevated pressures[R]. ASME GT2007-27552, 2007.
|
[7] |
Foust M J, Thomsen D, Stickles R, et al. Development of the GE aviation low emissions ATPS combustor for next generation aircraft engines[R]. AIAA-2012-0936, 2012. https://www.researchgate.net/publication/271374955_Development_of_the_GE_Aviation_Low_Emissions_TAPS_Combustor_for_Next_Generation_Aircraft_Engines
|
[8] |
Mongia H C. Engineering aspects of complex gas turbine combustion mixers Part V: 40 OPR[C]//Proc of the 9th Annual International Energy Conversion Engineering Conference. 2011.
|
[9] |
Fu Z B, Lin Y Z, Li J B, et al. Experimental investigation on ignition performance of LESS combustor[R]. ASME GT2011-45786, 2011.
|
[10] |
Fu Z B, Lin Y Z, Li L, et al. Experimental and numerical studies of a lean-burn internally-staged combustor[J]. Chinese Journal of Aeronautics, 2014, 27(3):488-496. DOI: 10.1016/j.cja.2013.12.017
|
[11] |
付镇柏, 林宇震, 张驰, 等.中心分级燃烧室预燃级燃烧性能试验[J].航空动力学报, 2015, 30(1):46-52. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkdlxb201409024
Fu Z B, Lin Y Z, Zhang C, et al. Experiment of combustion performance of internally-staged combustor pilot stage[J]. Journal of Aerospace Power, 2015, 30(1):46-52. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkdlxb201409024
|
[12] |
秦皓, 丁志磊, 李海涛, 等. LESS燃烧室非定长旋流流动[J].航空动力学报, 2015, 30(7):1566-1575. http://www.cnki.com.cn/Article/CJFDTotal-HKDI201507007.htm
Qin H, Ding Z L, Li H T, et al. Unsteady swirling flow in low emissions stirred swirls combustor[J]. Journal of Aerospace Power, 2015, 30(7):1566-1575. http://www.cnki.com.cn/Article/CJFDTotal-HKDI201507007.htm
|
[13] |
Li L, Lin Y Z, Fu Z B, et al. Emission characteristics of a mo-del combustor for aero gas turbine application[J]. Experimental Thermal and Fluid Science, 2016, 72:235-248. DOI: 10.1016/j.expthermflusci.2015.11.012
|
[14] |
Wang B, Zhang C, Lin Y Z, et al. Influence of main swirler vane angle on the ignition performance of TeLESS-Ⅱ combustor[J]. Journal of Engineering for Gas Turbine and Power, 2016, 139(1):011501. DOI: 10.1115/1.4034154
|
[15] |
Wang B, Zhang C, Hui X, et al. Influence of sleeve angle on the LBO performance of TeLESS-Ⅱ combustor[R]. AIAA-2016-4693, 2016.
|
[16] |
王智勇, 王波, 韩啸, 等. TeLESS Ⅱ低排放燃烧室预燃级设计对排放的影响[J].航空动力学报, 2017, 32(7):1561-1568. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201707004
Wang Z Y, Wang B, Han X, et al. Effect of pilot design in the TELESS Ⅱ low emission combustor on emission[J]. Journal of Aerospace Power, 2017, 32(7):1561-1568. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201707004
|
[17] |
Guin C. Characterization of autoignition and flashback in premixed injection systems AVT[C]//Proc of the Symposium on Gas Turbine Engine Combustion, Emissions and Alternative Fuels Lisbon. 1998.
|
[18] |
Lefebvre A H, Freeman W G, Cowell L H. Spontaneous ignition delay characteristics of hydrocarbon fuel-air mixtures[R]. NASA-CR-175064, 1986.
|
[19] |
毛茂华, 黄春峰.罗·罗公司民用航空发动机技术传承与创新[J].燃气涡轮试验与研究, 2017, 30(6):56-60. DOI: 10.3969/j.issn.1672-2620.2017.06.011
Mao M H, Huang C F. The development trends of Rolls-Royce's civil aero-engine technologies[J]. Gas Turbine Experiment and Research, 2017, 30(6):56-60. DOI: 10.3969/j.issn.1672-2620.2017.06.011
|
[20] |
赵永胜.受限流动空间内燃料横向喷射的自燃与回火特性研究[D].北京: 北京航空航天大学, 2016.
Zhao Y S. Autoignition and flashback characteristics of fuel injected into crossflow in the confined flow space[D]. Beijng: Beihang University, 2016.
|
[21] |
Nejad A S, Schetz J A. The effect of viscosity and surface tension of liquid injectants on the structural characteristics of the plume in a supersonic airstream[R]. AIAA-82-0253, 1982.
|
[22] |
方亚梅, 王全德, 王繁, 等.正十二烷高温燃烧详细化学动力学机理的系统简化[J].物理化学学报, 2012, 28(11):2536-2542. DOI: 10.3866/PKU.WHXB201208201
Fang Y M, Wang Q D, Wang F, et al. Reduction of the detailed kinetic mechanism for high-temperature combustion of n-decane[J]. Acta Physico-Chimica Sinica, 2012, 28(11):2536-2542. DOI: 10.3866/PKU.WHXB201208201
|
[23] |
甯红波, 李泽荣, 李象远.燃烧反应动力学研究进展[J].物理化学学报, 2016, 32(1):131-153. http://d.old.wanfangdata.com.cn/Periodical/wlhxxb201601011
Ning H B, Li Z R, Li X Y. Progress in combustion kinetics[J]. Acta Physico-Chimica Sinica, 2016, 32(1):131-153. http://d.old.wanfangdata.com.cn/Periodical/wlhxxb201601011
|
[24] |
张巍锋, 鲜雷勇, 雍康乐, 等.正十一烷/空气在宽温度范围下着火延迟的激波管研究[J].物理化学学报, 2016, 32(9):2216-2222. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlhxxb201609012
Zhang W F, Xian L Y, Yong K L, et al. A shock tube study of n-undecane/air ignition delays over a wide range of temperatures[J]. Acta Physico-Chimica Sinica, 2016, 32(9):2216-2222. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlhxxb201609012
|
[25] |
Vasu S S, Davidson D F, Hanson R K. Jet fuel ignition delay times:shock tube experiments over wide conditions and surrogate model predictions[J]. Combustion and Flame, 2008, 152(1-2):125-143. DOI: 10.1016/j.combustflame.2007.06.019
|
[26] |
Vasu S S, Davidson D F, Hanson R K. Jet fuel ignition delay times and modeling: studies at high pressures and low temperatures in a shock tube[R]. AIAA-2007-5671, 2007.
|
[27] |
Vasu S S, Davidson D F, Hanson R K. Shock tube ignition delay times and modeling of jet fuel mixtures[R]. AIAA-2006-4402, 2006.
|
[28] |
勾华杰, 王苏, 崔季平, 等. JP10点火延时的激波管实验测量[C]//第十二届全国激波与激波管会议论文集. 2006.
Gou H J, Wang S, Cui J P, et al. Ignition delay of JP10 using shock tube[C]//Proc of the 12th national shock and shock tube conference. 2006.
|
[29] |
廖钦.煤油及其裂解产物自点火现象的初步实验研究[D].合肥: 中国科学技术大学; 2009. http://cdmd.cnki.com.cn/Article/CDMD-10358-2009110958.htm
Liao Q. Experimental studies on autoignition phenomena of ke-rosene and cracked kerosene in a shock tube[D]. Hefei: University of Science and Technology of China, 2009. http://cdmd.cnki.com.cn/Article/CDMD-10358-2009110958.htm
|
[30] |
梁金虎, 王苏, 张灿, 等. RP-3航空煤油点火特性研究[J].力学学报, 2014, 46(3):352-360. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-GCXB201710002240.htm
Liang J H, Wang S, Zhang C, et al. Studies on the autoignition characteristics of RP-3 aviation kerosene[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(3):352-360. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-GCXB201710002240.htm
|
[31] |
廖钦, 徐胜利.雾化激波管研制和煤油点火延时测量[J].实验流体力学, 2009, 23(3):70-79. DOI: 10.3969/j.issn.1672-9897.2009.03.015
Liao Q, Xu S L. The ignition delay measurement of atomized kerosene air mixture in an aerosol shock tube[J]. Journal of Experiments in Fluid Mechanics, 2009, 23(3):70-79. DOI: 10.3969/j.issn.1672-9897.2009.03.015
|
[32] |
廖钦, 徐胜利, 李卫兵.不同压力煤油气溶胶点火延时的测量研究[J].中国科学技术大学学报, 2009, 39(6):631-637. http://d.old.wanfangdata.com.cn/Periodical/zgkxjsdxxb200906012
Liao Q, Xu S L, Li W B. Study on ignition delay of kerosene aerosol in shock tube[J]. Journal of University of Science and Technology of China, 2009, 39(6):631-637. http://d.old.wanfangdata.com.cn/Periodical/zgkxjsdxxb200906012
|
[33] |
Wang W J, Oehlschlaeger M A. A shock tube study of methyl decanoate autoignition at elevated pressures[J]. Combustion and Flame, 2012, 159(2):476-481. DOI: 10.1016/j.combustflame.2011.07.019
|
[34] |
Tang C L, Man X J, Wei L J, et al. Further study on the ignition delay times of propane-hydrogen-oxygen-argon mixtures:effect of equivalence ratio[J]. Combustion and Flame, 2013, 160(11):2283-2290. DOI: 10.1016/j.combustflame.2013.05.012
|
[35] |
Zhang C H, Li B, Rao F, et al. A shock tube study of the autoignition characteristics of RP-3 jet fuel[J]. Proceedings of the Combustion Institute, 2015, 35(3):3151-3158. DOI: 10.1016/j.proci.2014.05.017
|
[36] |
Davidson D F, Zhu Y, Shao J K, et al. Ignition delay time correlations for distillate fuels[J]. Fuel, 2017, 187:26-32. DOI: 10.1016/j.fuel.2016.09.047
|
[37] |
Kumar K, Sung C J. An experimental study of the autoignition characteristics of conventional jet fuel/oxidizer mixtures:Jet-A and JP-8[J]. Combustion and Flame, 2010, 157(4):676-685. DOI: 10.1016/j.combustflame.2010.01.001
|
[38] |
Ihara T, Qin X J, Tanaka T, et al. Auto ignition and knocking phenomena in stratified mixture of lean condition[R]. ASME HT2007-32736, 2007.
|
[39] |
Kumar K, Sung C J. Autoignition of jet fuels under high pressure and low-to-intermediate temperatures[R]. AIAA-2009-1527, 2009.
|
[40] |
Kumar K, Mittal G, Sung C J. Autoignition of n-decane under elevated pressure and low-to-intermediate temperature conditions[J]. Combustion and Flame, 2009, 156(6):1278-1288. DOI: 10.1016/j.combustflame.2009.01.009
|
[41] |
Allen C, Toulson E, Tepe D, et al. Characterization of the effect of fatty ester composition on the ignition behavior of biodiesel fuel sprays[J]. Fuel, 2013, 111(3):659-669. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=08051426a953d619ae38f952efd89366
|
[42] |
Valco D, Gentz G, Allen C, et al. Autoignition behavior of synthetic alternative jet fuels:an examination of chemical composition effects on ignition delays at low to intermediate temperatures[J]. Proceedings of the Combustion Institute, 2015, 35(3):2983-2991. DOI: 10.1016/j.proci.2014.05.145
|
[43] |
Valco D J, Min K, Oldani A. Low temperature autoignition of conventional jet fuels and surrogate jet fuels with targeted pro-perties in a rapid compression machine[J]. Proceedings of the Combustion Institute, 2016, 36(3):3687-3694. https://www.researchgate.net/publication/308978559_Low_temperature_autoignition_of_conventional_jet_fuels_and_surrogate_jet_fuels_with_targeted_properties_in_a_rapid_compression_machine?ev=auth_pub
|
[44] |
Gokulakrishnan P, Klassen M S, Roby R J. Ignition characteri-stics of a fischer-tropsch synthetic jet fuel[R]. ASME GT2008-51211, 2008.
|
[45] |
Holton M M, Gokulakrishnan P, Klassen M S, et al. Autoignition delay time measurements of methane, ethane, and propane pure fuels and methane-based fuel blends[R]. ASME GT2009-59309, 2009.
|
[46] |
Gokulakrishnan P, Gaines G, Klassen M S, et al. Autoignition of aviation fuels experimental and modeling study[R]. AIAA-2007-5701. 2007.
|
[47] |
Gokulakrishnan P, Gaines G, Currano J, et al. Experimental and kinetic modeling of kerosene-type fuels at gas turbine opera-ting conditions[J]. Journal of Engineering for Gas Turbines and Power, 2007, 129(3):655-663. DOI: 10.1115/1.2436575
|
[48] |
Joklik R, Fuller C, Gokulakrishnan P, et al. The effect of multi-component fuel evaporation on the ignition of JP-8[R]. ASME GT2010-22990, 2010.
|
[49] |
Fuller C C, Gokulakrishnan P, Klassen M S, et al. Investigation of the effects of vitiated conditions on the autoignition of JP-8[R]. AIAA-2009-4925, 2009.
|
[50] |
Beerer D, McDonell V, Samuelsen S, et al. Interpretation of flow reactor based ignition delay measurements[R]. ASME GT2009-60268, 2009.
|
[51] |
Beerer D J, McDonell V G. An experimental and kinetic study of alkane autoignition at high pressures and intermediate temperatures[J]. Proceedings of the Combustion Institute, 2011, 33(1):301-307. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC0211740112
|
[52] |
Christensen M K, Pal S, Woodward R D, et al. Flow reactor autoignition studies of iso-octane at high pressures and low to intermediate temperatures[R]. AIAA-2012-0500, 2012.
|
[53] |
Schönborn A, Sayad P, Konnov A A, et al. Visualisation of propane autoignition in a turbulent flow reactor using OH* chemiluminescence imaging[J]. Combustion and Flame, 2013, 160(6):1033-1043. DOI: 10.1016/j.combustflame.2013.01.018
|
[54] |
Schönborn A, Sayad P, Konnov A A, et al. Autoignition of dimethyl ether and air in an optical flow-reactor[J]. Energy & Fuels, 2014, 28(6):4130-4138. http://cn.bing.com/academic/profile?id=4af4db50e252b51b4aa33628810c0c78&encoded=0&v=paper_preview&mkt=zh-cn
|
[55] |
Wang H W, Oehlschlaeger M A. Autoignition studies of conventional and fischer-tropsch jet fuels[J]. Fuel, 2012, 98(6):249-258. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=585da8efbca79a537ad8e3933482e3ff
|
[56] |
Kumar K, Sung C J. A comparative experimental study of the autoignition characteristics of alternative and conventional jet fuel/oxidizer mixtures[J]. Fuel, 2010, 89(10):2853-2863. DOI: 10.1016/j.fuel.2010.05.021
|
[57] |
刘伟雄, 杨阳, 邵菊香, 等.空气污染组分H2O和CO2对乙烯燃烧性能的影响[J].物理化学学报, 2009, 25(8):1618-1622. DOI: 10.3866/PKU.WHXB20090809
Liu W X, Yang Y, Shao J X, et al. Influence of H2O and CO2 contamination in air on the combustion properties of ethylene[J]. Acta Physico-Chimica Sinica, 2009, 25(8):1618-1622. DOI: 10.3866/PKU.WHXB20090809
|
[58] |
梁金虎, 胡弘浩, 王苏, 等.空气污染组分H2O和CO2对乙烯点火性能的影响[J].推进技术, 2014, 35(2):220-226. http://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201402012.htm
Liang J H, Hu H H, Wang S, et al. Effects of H2O and CO2 in vitiated air on ignition characteristics of ethylene[J]. Journal of Propulsion Technology, 2014, 35(2):220-226. http://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201402012.htm
|
[59] |
Andrey S, Zhukov V, Sechenov V. Ignition delay times of Jet-A/air mixtures[R]. AIAA-2012-0501, 2012.
|
[60] |
Aggarwal S K. A review of spray ignition phenomena:present status and future research[J]. Progress in Energy and Combustion Science, 1998, 24(6):565-600. DOI: 10.1016/S0360-1285(98)00016-1
|
[61] |
Khan Q S, Baek S W, Ghassemi H. On the autoignition and combustion characteristics of kerosene droplets at elevated pressure and temperature[J]. Combustion Science and Technology, 2007, 179(12):2437-2451. DOI: 10.1080/00102200701484605
|
[62] |
钟北京, 姚通, 文斐.基于特征值分析的正癸烷骨架和总包简化机理[J].物理化学学报, 2014, 30(2):210-216. http://d.old.wanfangdata.com.cn/Periodical/wlhxxb201402002
Zhong B J, Yao T, Wen F. Skeletal and reduced mechanisms of n-decane simplified with eigenvalue analysis[J]. Acta Physico-Chimica Sinica, 2014, 30(2):210-216. http://d.old.wanfangdata.com.cn/Periodical/wlhxxb201402002
|
[63] |
刘建文, 熊生伟, 马雪松, 等.正癸烷燃烧详细反应机理的构建及简化[J].推进技术, 2012, 33(1):64-68. http://d.old.wanfangdata.com.cn/Periodical/tjjs201201011
Liu J W, Xiong S W, Ma X S, et al. Development and reduction of n-decane detailed combustion reduction mechanism[J]. Journal of Propulsion Technology, 2012, 33(1):64-68. http://d.old.wanfangdata.com.cn/Periodical/tjjs201201011
|
[64] |
刘建文, 姚通, 钟北京, 等.正十四烷低温点火及燃烧机理的构建和简化[J].推进技术, 2017, 38(1):119-124. http://d.old.wanfangdata.com.cn/Periodical/tjjs201701016
Liu J W, Yao T, Zhong B J, et al. Development and reduction of n-tetradecane mechanism for low temperature ignition and combustion[J]. Journal of Propulsion Technology, 2017, 38(1):119-124. http://d.old.wanfangdata.com.cn/Periodical/tjjs201701016
|
[65] |
ASTM D6890, Standard test method for determination of ignition delay and derived cetane number (DCN) of diesel fuel oils by combustion in a constant volume chamber[S]. ASTM, 2012.
|
[66] |
ASTM D7668, Standard test method for determination of derived cetane number (DCN) of diesel fuel oils-fixed range injection period, constant volume combustion chamber method[S]. ASTM, 2012.
|
[67] |
Zheng Z L, Badawy T, Henein N, et al. Investigation of physical and chemical delay periods of different fuels in the ignition quality tester[J]. Journal of Engineering for Gas Turbines and Power, 2013, 135(6):061501. DOI: 10.1115/1.4023607
|
[68] |
Markides C N, Mastorakos E. An experimental study of hydrogen autoignition in a turbulent co-flow of heated air[J]. Proceedings of the Combustion Institute, 2005, 30(1):883-891. http://cn.bing.com/academic/profile?id=f30102563573f15cc66a5a07d3c38f4d&encoded=0&v=paper_preview&mkt=zh-cn
|
[69] |
Wang Y, Rutland C J. Effects of temperature and equivalence ratio on the ignition of n-heptane fuel spray in turbulent flow[J]. Proceedings of the Combustion Institute, 2005, 30(1):893-900. https://www.researchgate.net/publication/222406951_Effects_of_temperature_and_equivalence_ratio_on_the_ignition_of_n-heptane_fuel_spray_in_turbulent_flow
|
[70] |
Shinjo J, Umemura A. Droplet/turbulence interaction and early flame kernel development in an autoigniting realistic dense spray[J]. Proceedings of the Combustion Institute, 2013, 34(1):1553-1560. http://cn.bing.com/academic/profile?id=aed849190906fa3a7635861acd639884&encoded=0&v=paper_preview&mkt=zh-cn
|
[71] |
Dooley S, Song H W, Heyne J, et al. The experimental evaluation of a methodology for surrogate fuel formulation to emulate gas phase combustion kinetic phenomena[J]. Combustion and Flame, 2012, 159(4):1444-1466. DOI: 10.1016/j.combustflame.2011.11.002
|
[72] |
Hui X, Kumar K, Sung C J, et al. Experimental studies on the combustion characteristics of alternative jet fuels[J]. Fuel, 2012, 98(3):176-182. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a6c8e0033273c329fa87d972ca9f2c56
|
[73] |
Won S H, Veloo P S, Santner J, et al. Comparative evaluation of global combustion properties of alternative jet fuels[R]. AIAA-2013-0156, 2013.
|
[74] |
Dooley S, Won S H, Jahangirian S, et al. The combustion kinetics of a synthetic paraffinic jet aviation fuel and a fundamentally formulated, experimentally validated surrogate fuel[J]. Combustion and Flame, 2012, 159(10):3014-3020. DOI: 10.1016/j.combustflame.2012.04.010
|
[75] |
Allen C, Valco D, Toulson E, et al. Ignition behavior and surrogate modeling of JP-8 and of camelina and tallow hydrotreated renewable jet fuels at low temperatures[J]. Combustion and Flame, 2013, 160(2):232-239. DOI: 10.1016/j.combustflame.2012.10.008
|
[76] |
Marek C J, Papathnkos L C, Verbulecz P W. Preliminary studies of autoignition and flashback in a premixing-prevaporizing flame tube using Jet-A fuel at lean equivalence ratios[R]. NASA-TM-X-3526, 1977.
|
[77] |
Marek C J, Baker C E. High-pressure flame visualization of autoignition and flashback phenomena with liquid-fuel spray[R]. NASA-TM-83501, 1983.
|
[78] |
Stringer F W, Clarke A E, Clarke J S. The spontaneous ignition of hydrocarbon fuels in a flowing system[C]. Proceedings of the Institution of Mechanical Engineers, 1969.
|
[79] |
Sturgess G J. Advanced low-emissions catalytic combustor program, phase 1 final report[R]. NASA-CR-159656, 1981.
|
[80] |
Hinkeldey O, Koch R, Bauer H J, et al. Laser based study of spray auto-ignition in a generic mixing duct[R]. ASME GT2008-50143, 2008.
|
[81] |
Hinkeldey O, Schießl R, Cano-Wolff M, et al. Laser based study of auto-ignition of sprays in a continuous flow reactor[C]//Proc of the European Combustion Meeting. 2007.
|
[82] |
Sims G J, Mistry S L, Wood J P, et al. A Study into the auto-ignition characteristics of hydrocarbon fuels with application to gas turbines[R]. ASME GT2008-50824, 2008.
|
[83] |
Gordon R L, Mastorakos E. Autoignition of monodisperse biodiesel and diesel sprays in turbulent flows[J]. Experimental Thermal and Fluid Science, 2012, 43(3):40-46. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1531a20845cf7d522fa079141aba549a
|
[84] |
Mastorakos E. Ignition of turbulent non-premixed flames[J]. Progress in Energy and Combustion Science, 2009, 35(1):57-97. DOI: 10.1016/j.pecs.2008.07.002
|
[85] |
Williams A, Shcherbik D, Bibik O, et al. Autoignition of a Jet-A spray in a high temperature vitiated air flow[R]. ASME GT2015-42199, 2015.
|
[86] |
徐兴平, 张孝春, 李江宁, 等.燃油在高温高速气流中自燃规律的研究[C].沈阳: 中国航空学会第十四届燃烧与传热传质学术交流会论文集. 2007.
Xu X P, Zhang X C, Li J N, et al. Study onautoignition of fuel in high temperature and high speed airflow[C]//Proc of the 14th Academic Conference on Combustion and Heat Transfer of China Aviation Society. 2007.
|
[87] |
Zhao Y S, Zhang C, Lin Y Z. Random behavor of kerosene spray autoignition in crossflow[R]. ASME GT2016-57043, 2016.
|