GUO Xiangdong, ZHANG Pingtao, ZHAO Xianli, YANG Shengke, LIN Wei. The compliance verification of thermodynamic flowfield in the large icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(5): 79-88. DOI: 10.11729/syltlx20190113
Citation: GUO Xiangdong, ZHANG Pingtao, ZHAO Xianli, YANG Shengke, LIN Wei. The compliance verification of thermodynamic flowfield in the large icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(5): 79-88. DOI: 10.11729/syltlx20190113

The compliance verification of thermodynamic flowfield in the large icing wind tunnel

More Information
  • Received Date: September 09, 2019
  • Revised Date: November 14, 2019
  • The compliance of thermodynamic flowfield in the large icing wind tunnel is the precondition for the airworthiness application of the large icing wind tunnel. In order to verify the compliance of the thermodynamic flowfield in the CARDC icing wind tunnel, a verification method is established firstly, and then a verification test is conducted for the main test section. The influences of the test section total temperature, velocity and the nozzle dry air jet flow on the spatial uniformity and temporal stability of thermodynamic flowfield are examined, and the correction relationship of the test section total temperature is obtained. Finally, the thermodynamic flowfield operating envelop is built. Results show that decreased test section total temperature and increased test section velocity could reduce the spatial uniformity of the thermodynamic flowfield in the test section for the actual refrigeration system of the CARDC icing wind tunnel, but have no obvious effects on the temporal stability of the thermodynamic flowfield. The nozzle dry air jet flow could increase the test section total temperature, while it has no significant influence on the spatial uniformity and temporal stability of the thermodynamic flowfield. The quality of the thermodynamic flowfield of the CARDC icing wind tunnel in the main test section almost meets the requirement of SAE ARP 5905-2003 under the main test condition.
  • [1]
    林贵平, 卜雪琴, 申晓斌, 等.飞机结冰与防冰技术[M].北京:北京航空航天大学出版社, 2016.
    [2]
    易贤, 王斌, 李伟斌, 等.飞机结冰冰形测量方法研究进展[J].航空学报, 2017, 38(2):13-24. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkxb201702002

    YI X, WANG B, LI W B, et al. Research progress on ice shape measurement approaches for aircrafticing[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2):13-24. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkxb201702002
    [3]
    郭向东, 王梓旭, 李明, 等.结冰风洞中液滴过冷特性数值研究[J].航空学报, 2017, 38(10):76-84. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkxb201710008

    GUO X D, WANG Z X, LI M, et al. Numerical study of supercooling characteristics of droplet in icing windtunnel[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(10):76-84. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkxb201710008
    [4]
    王梓旭, 沈浩, 郭龙, 等. 3 m×2 m结冰风洞云雾参数校测方法[J].实验流体力学, 2018, 32(2):61-67. http://www.syltlx.com/CN/abstract/abstract11096.shtml

    WANG Z X, SHEN H, GUO L, et al. Cloud calibration method of 3 m×2 m icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(2):61-67. http://www.syltlx.com/CN/abstract/abstract11096.shtml
    [5]
    IRVINE T, KEVDZIJA S, SHELDON D, et al. Overview of the icing and flow quality improvements program for the NASA-Glenn Icing Research Tunnel[R]. AIAA-2001-0229, 2001.
    [6]
    GONSALEZ J C, ALLEN ARRINGTON E, CURRY M R Ⅲ. Flow quality surveys of the NASA Glenn Icing Research Tunnel (2000 tests)[R]. AIAA-2001-0232, 2001.
    [7]
    GONSALEZ J C, ALLEN ARRINGTON E, CURRY M R Ⅲ. Thermal calibration of the NASA Glenn Icing Research Tunnel (2000 tests)[R]. AIAA-2001-0233, 2001.
    [8]
    ALLEN ARRINGTON E, GONSALEZ J C. Improvements to the total temperature calibration of the NASA Glenn Icing Research Tunnel[R]. AIAA-2005-4276, 2005.
    [9]
    OLDENBURG J R, IDE R F, DEL ROSO R L, et al. Improvements to the NASA Glenn Icing Research Tunnel's air temperature measurement system[R]. AIAA-2006-1222, 2006.
    [10]
    PASTOR-BARSI C M, ALLEN ARRINGTON E. Aero-thermal calibration of the NASA Glenn Icing Research Tunnel (2012 test)[R]. AIAA-2012-2934, 2012.
    [11]
    STEEN L E, VAN ZANTE J F, BROEREN A P, et al. Flow quality surveys in the settling chamber of the NASA Glenn Icing Research Tunnel (2011 tests)[R]. AIAA-2012-2935, 2012.
    [12]
    VECCHIONE L, DE MATTEIS P P. An overview of the CIRA Icing Wind Tunnel[R]. AIAA-2003-0900, 2003.
    [13]
    ESPOSITO B M, RAGNI A, FERRIGNO F, et al. Cloud calibration update of the CIRAIcing Wind Tunnel[R]. SAE 2003-01-2132, 2003.
    [14]
    CHINTAMANI S H, BELTER D L. Design features and flow qualities of the Boeing research aerodynamic icing tunnel[R]. AIAA-1994-0540, 1994.
    [15]
    IRANI E, AL-KHALIL K. Calibration and recent upgrades to the Cox Icing Wind Tunnel[R]. AIAA-2008-0437, 2008.
    [16]
    AC-9C Aircraft Icing Technology Committee. SAE ARP 5905-2003, Calibration and acceptance of icing wind tunnels[S]. Warrendale, PA: SAE International, 2003.
  • Cited by

    Periodical cited type(7)

    1. 魏龙涛,刘森云,王桥,郭奇灵. 0.75m×0.50m结冰风洞气动——热流场品质评估. 航空工程进展. 2024(04): 162-170+2 .
    2. 魏龙涛,左承林,郭向东,刘森云,郭奇灵. 三维冰形激光测量技术在结冰风洞中的应用. 航空动力学报. 2024(11): 246-253 .
    3. 刘森云,王桥,易贤,张平涛,左承林,郭奇灵. 3m×2m结冰风洞试验技术新进展(2020-2022年). 空气动力学学报. 2023(01): 57-65 .
    4. 张平涛,王文瑄,郭向东,吕宏宇,陈良,侯予. 大型结冰风洞制冷系统蒸发压力预测与降温过程优化研究. 低温工程. 2023(01): 72-78 .
    5. 张兴焕,张平涛,彭博,易贤. 基于机器学习的结冰风洞温度场预测. 实验流体力学. 2022(05): 8-15 . 本站查看
    6. 郭向东,张平涛,张珂,郭奇灵,郭龙. 3 m×2 m结冰风洞热流场品质提高及评估. 实验流体力学. 2021(04): 41-51 . 本站查看
    7. 张平涛,王文瑄,郭向东,陈良,侯予. 大型结冰风洞蒸发器气流温度均匀性研究. 低温工程. 2021(05): 68-73 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (248) PDF downloads (13) Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close